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A relatively small number of mathematically simple maps and flows are routinely used as examples
of low-dimensional chaos. These systems typically have a number of parameters that are chosen for
historical or other reasons. This paper addresses the question of whether a different choice of these
parameters can produce strange attractors that are significantly more chaotic �larger Lyapunov
exponent� or more complex �higher dimension� than those typically used in such studies. It reports
numerical results in which the parameters are adjusted to give either the largest Lyapunov exponent
or the largest Kaplan-Yorke dimension. The characteristics of the resulting attractors are displayed
and discussed. © 2007 American Institute of Physics. �DOI: 10.1063/1.2781570�

Countless papers have been published in the past few
decades in which a small number of relatively common
iterated maps and systems of ordinary differential equa-
tions are used as prototypical examples of low-
dimensional chaos in discrete and continuous-time sys-
tems, respectively. Typically, these systems have a
number of parameters for which standard values are
generally taken, in most cases values that were chosen
somewhat arbitrarily in the original papers and that have
continued to be used. With the advent of fast computers,
it is now possible to explore the entire parameter space of
these systems with the goal of finding parameters that
optimize some characteristic of the system such as its
chaoticity or complexity. Here we use the largest
Lyapunov exponent as a measure of chaoticity and the
Kaplan-Yorke dimension of a measure of complexity (or
strangeness). In some cases, the standard parameters are
close to optimal for these quantities, but in other cases,
quite different attractors result. These near optimal pa-
rameters might better serve some of the purposes for
which these systems are often used.

I. GENERAL SYMMETRIC UNIMODAL MAPS

To illustrate the idea, consider one of the simplest cha-
otic systems, the one-dimensional unimodal map, of which
the logistic map1 is perhaps the best known example, but the
tent map2 is another common example. These are two of a
wider class of general symmetric map3 given by

Xn+1 = A�1 − �2Xn − 1��� , �1�

where A is the usual bifurcation parameter �0�A�1� and �
is a measure of the smoothness of the map, with �=2 corre-
sponding to the logistic map, �=1 corresponding to the tent
map, and �=0.5 corresponding to the cusp map. The map is
symmetric about the critical point at Xn=0.5 and is nonin-
vertible since each iterate has two possible preimages. For
��1, the derivative is discontinuous at the critical point. For
��1, the derivative is zero at the critical point and continu-
ous, and the function is smooth. For ��m �an integer�, the
mth derivative is zero, and the critical point is degenerate for
m�2. The map does not have chaotic solutions for ��0.5

because the fixed point at Xn=0 is then stable for all A.
We can now ask where in the A� plane is the Lyapunov

exponent the largest. Since A is a measure of the stretching,
we expect for a given � that the largest Lyapunov exponent
will occur at the largest value of A for which the solution is
bounded, and that value occurs at A=1, where the unit inter-
val 0�Xn�1 is endomorphic. Thus the problem reduces to
finding the value of � that maximizes the Lyapunov expo-
nent, given in this case by �1=ln�2��2Xn−1��−1� averaged
over the orbit. Note that all logarithms in this paper are
base e .

Figure 1 shows the result for 108 iterations at each value
of �. The Lyapunov exponent is nearly constant from �
slightly less than 1 to almost 3, with clear peaks at �=1 and
2, corresponding to the tent map and logistic map, respec-
tively. This result confirms the fact that these two maps are
conjugate with Lyapunov exponents of ln�2�=0.693 14. . .
and that they are not conjugate to other maps of this class.
What is less well known is that they are maximally chaotic
for maps of the form of Eq. �1�.

II. HÉNON MAP

More interesting is the case of two-dimensional dissipa-
tive maps for which the Hénon map4 is probably the simplest
such example since it is given by

Xn+1 = 1 − aXn
2 + bYn, Yn+1 = Xn. �2�

This map is invertible for b�0 with a constant area contrac-
tion �sum of the Lyapunov exponents� of ln�b�. The usual
parameters are taken as a=1.4 and b=0.3, for which the
Lyapunov exponents5 are �1=0.419 22 and �2=−1.623 19
with a Kaplan-Yorke dimension6 of DKY=1−�1 /�2

=1.258 27.
To find the location in the positive ab plane with the

highest value of �1, a random search was performed starting
with the above values of a and b and exploring a Gaussian
two-dimensional �2D� neighborhood in parameter space with
an initial fractional standard deviation of �=0.1, taking 2
�107 iterations at each set of parameters and calculating the
Lyapunov exponents using the method in Ref. 3. Whenever a
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value of �1 was found that was higher than any previously
found, the search neighborhood was moved to those coordi-
nates, and � was increased by a factor of 1.1. Otherwise �
was reduced by a factor of 0.999 and the search continued
until � became negligibly small. Initial conditions were taken
as the values at the end of the previous best solution. Once
an optimum was found, it was recalculated with many more
iterations �typically 1011� to verify the accuracy of the
results.

Using this method, the solution rapidly and consistently
converged to a=2 and b=0, which corresponds to a collapse
of the Hénon map to the quadratic map, which is conjugate
to the logistic map and hence has Lyapunov exponents of
�1=ln�2�=0.693 14. . . . and �2=−	 with a Kaplan-Yorke di-
mension of DKY=1. In this limit, the map is infinitely dissi-
pative and noninvertible. Said differently, any dissipation
less than infinite only reduces the chaoticity.

More interesting and less obvious are the parameters that
maximize the Kaplan-Yorke dimension. Using the same
method, the values found �to five significant digits� are a
=1 and b=0.542 72, for which the Lyapunov exponents are
�1=0.271 42 and �2=−0.882 58 with a Kaplan-Yorke di-
mension of DKY=1.307 53. Throughout this paper, numerical
results are quoted to the number of digits that are thought to
be significant, although the last digit is usually only an ap-
proximation. Figure 2 shows the attractor for this case, which
is recognizably Hénon-like but with a bit more structure as
befits its higher dimension, along with its basin of attraction.
The basin boundary touches the attractor at numerous places,
as is also the case for the general symmetric maps with A
=1 and is a general feature of these optimized solutions.
Attractors are usually most chaotic or most complex just
before their orbits become unbounded. As an aside, note that
if one uses the entropy as a measure of complexity, its value
would be greatest where �1 is greatest, since by Pesin’s
identity,7 the entropy is the sum of the positive Lyapunov
exponents and all the cases considered in this paper have a
single positive exponent. Unlike chaoticity, which is quanti-
fied by the largest Lyapunov exponent, there is no univer-
sally agreed upon definition of complexity, but the dimension

of the attractor �most accurately calculated using the Kaplan-
Yorke conjecture� captures the notion of the minimum num-
ber of variables required for a system to exhibit the given
behavior.

III. LOZI MAP

Closely related to the Hénon map is the Lozi map,8

given by

Xn+1 = 1 − a�Xn� + bYn, Yn+1 = Xn. �3�

It can be viewed as a piecewise-linear approximation to the
Hénon map in the same way that the tent map is a piecewise-
linear approximation to the logistic map. Typical parameters
are a=1.7 and b=0.5, where the Lyapunov exponents are
�1=0.470 23 and �2=−1.163 38 with a Kaplan-Yorke di-
mension of DKY=1.404 19. Not surprisingly, it is also maxi-
mally chaotic for a=2 and b=0, where the Lyapunov expo-
nents are �1=ln�2�=0.693 14. . . . and �2=−	 with a Kaplan-
Yorke dimension of DKY=1.

Much more interesting are the parameters that maximize
the Kaplan-Yorke dimension, which occur along the bound-
ary b=4−2a where the solutions become unbounded.9 The
greatest dimension occurs for a=1.7052 and b=0.5896, for
which the Lyapunov exponents are �1=0.448 36 and �2

=−0.976 67 with a Kaplan-Yorke dimension of DKY

=1.459 07. Figure 3 shows the attractor for this case along
with its basin of attraction, whose boundary touches the at-
tractor.

One might wonder whether it is possible to obtain larger
values of the Lyapunov exponent or Kaplan-Yorke dimen-
sion by changing the coefficients of the remaining two terms
in Eqs. �2� and �3� to values other than unity. Such is not
possible because one can in general linearly rescale the two
variables X and Y to make two of the coefficients unity with-

FIG. 1. Lyapunov exponent for the general symmetric map showing peaks
at �=1 �tent map� and �=2 �logistic map� where its value is ln�2�.

FIG. 2. �Color online� Attractor for the maximally complex Hénon map with
a=1 and b=0.542 72 along with its basin of attraction.
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out changing the Lyapunov exponent or Kaplan-Yorke di-
mension. Thus these equations are already in their most gen-
eral form, although the choice of where to put the parameters
is somewhat arbitrary. Indeed, Hénon and Lozi in their origi-
nal papers put the parameter b as the coefficient of the Xn

term in Eqs. �2� and �3�, respectively.

IV. LORENZ SYSTEM

These methods can also be applied to autonomous cha-
otic flows, probably the most widely cited example of which
is the Lorenz system10 given by

ẋ = 
�y − x�, ẏ = − xz + rx − y, ż = xy − bz , �4�

where ẋ=dx /dt, etc. The parameters suggested by Lorenz are

=10, r=28, and b=8/3, which gives a Lyapunov exponent
spectrum5 of �= �0.905 64, 0 , −14.572 31� and a Kaplan-
Yorke dimension of DKY=1−�1 /�3=2.062 15. Note that for
a three-dimensional flow as in Eq. �4�, the coefficients of
four of the seven terms can be set to unity by a renormaliza-
tion of x, y, z, and t, so that three parameters suffice to define
all the possible dynamics of the system.

However, the parameters chosen by Lorenz affect the
time scale of the dynamics, which is given by 1/�
r, so that
an arbitrarily large Lyapunov exponent can be obtained by
taking 
 and/or r sufficiently large. Indeed, a naive attempt
to optimize the parameters for the greatest Lyapunov expo-
nent leads to all three parameters growing without bound,
while the dynamics become increasingly rapid. A similar but
less rapid divergence of r occurs when attempting to opti-
mize the Kaplan-Yorke dimension.

What is required is a transformation of Eq. �4� into a
dimensionless form where the time scale and the attractor
size are of order unity. Such a transformation is given by

u = x/�
r, v = y/�
r ,

�5�
w = �z − r�/�
r, � = t�
r .

Then in terms of the new variables, Eq. �4� becomes

u̇ = ��v − u�, v̇ = − uw − �v ,

�6�
ẇ = uv − 
/� − 
w ,

where u̇=du /d�, etc., and the new parameters are given by

� = �
/r, � = 1/�
r, 
 = b/�
r . �7�

The standard Lorenz parameters then become �=0.5976, �
=0.0598, and 
=0.1594, giving Lyapunov exponents of �
= �0.054 12, 0 , −0.870 92�.

The fact that all three terms in Eq. �6� have a linear
damping explains why the basin of attraction for the Lorenz
system is the entire state space. The Lorenz system is some-
what special in this sense, and it can be shown that there is
an ellipsoid centered on the origin for which d /dt�x2+y2

+z2� is everywhere negative, and that eventually traps all
trajectories that begin outside it. The state space contraction
�the sum of the Lyapunov exponents� is −��+�+
�.

Equation �6� is amenable to optimization of both the
Lyapunov exponent and the Kaplan-Yorke dimension. The
values for �, �, and 
 were determined as for the Hénon map
except using 2�107 iterations of a fourth-order Runge-Kutta
integrator with a fixed time-step size of 0.1. As before, the
results quoted are from a much longer calculation �typically
1010 iterations with a step size of 0.05� to ensure five-digit
accuracy of the Lyapunov exponents and Kaplan-Yorke di-
mension.

A numerical difficulty is that parameters close to those
that maximize the Lyapunov exponent give transiently cha-
otic solutions, some of which are of very long duration,
eventually settling to one of the equilibrium points at
�u� , v� , w��= �±�
�1/�−�� , ±�
�1/�−�� , −��. A suf-
ficient condition for preventing such transients is �2��+3�
+
�−�+�+
�0, which ensures that these points are un-
stable. However, that condition is not necessary, and there
exists a small region of parameter space where a strange
attractor coexists with these stable equilibrium points.11 Un-
fortunately, no analytical result is available for calculating
this boundary where the largest Lyapunov exponent appar-
ently occurs. This difficulty was addressed by increasing the
duration of the computation to 108 iterations as the final so-
lution is approached, testing the final solution with �1010

iterations, and increasing the final value of � very slightly to
give some margin for error. It is also necessary that the equi-
librium at �0, 0 , −1/�� be unstable, but this condition is
easily satisfied by ���1, which is well within the region of
interest.

The maximum Lyapunov exponent calculated as de-
scribed above apparently occurs for �=0.300, �=0.028, and

=0.250, for which the Lyapunov exponents are �
= �0.071 35, 0 , −0.649 35� and the Kaplan-Yorke dimen-
sion is DKY=1−�1 /�3=2.109 87. The attractor, shown in
Fig. 4 projected onto the uw plane, resembles the familiar
Lorenz butterfly attractor with the usual parameters, although

FIG. 3. �Color online� Attractor for the maximally complex Lozi map with
a=1.7052 and b=0.5896 along with its basin of attraction.
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it is somewhat thinner. The Lorenz parameters corresponding
to this case are 
=� /�=10.71, r=1/��=119.0, and b
=
 /�=8.93, for which the Lyapunov exponents are �
= �2.548 80, 0 , −23.188 80�.

A simple attempt to adjust the parameters of Eq. �6� for
the largest Kaplan-Yorke dimension causes all three param-
eters to shrink to zero. Therefore, the �v and 
w terms in Eq.
�6� can be set to zero, and the variables rescaled according to
�x , y , z , t�= ��u , �v , �w , � /��, which results in the
one-parameter system

ẋ = y − x, ẏ = − xz, ż = xy − R , �8�

where R=
 /�3=br /
2. Apart from signs, Eq. �8� is the dif-
fusionless Lorenz system that has been previously reported12

and studied.13 It has equilibrium points at �x� , y� z��
= �±�R , ±�R , 0� with eigenvalues that satisfy the charac-
teristic equation �3+�2+R�+2R=0.

A simple calculation shows that the maximum Kaplan-
Yorke dimension occurs for R=3.4693 where the Lyapunov
exponents are �= �0.307 91, 0 , −1.307 91�. For this value
of R, the equilibrium points are spiral saddles with eigenval-
ues −1.581 18, 0.290 59±2.074 56i. The attractor for this
case is shown in Fig. 5 projected onto the xz plane and has a
dimension of DKY=2.235 42. Equation �8� illustrates nicely
how simplifying an equation such as Eq. �4� can increase the
complexity of its solution.

As a consistency check, the parameters above can be
converted into equivalent Lorenz parameters for �=
=0.01
�small� as follows:

b = 
/� = 1, 
 = �3 b/�2R = �3 104/R, r = 1/�2
 = �3 108 R .

�9�

For R=3.4693, the corresponding parameters are 
=14.232,
r=702.66, and b=1, which gives Lyapunov exponents of �

= �3.832 50, 0 , −20.064 50� and a Kaplan-Yorke dimen-
sion of DKY=2.191 01, which is only 2% smaller than the
asymptotic value of 2.235 42 in the limit of infinite r.

Figure 6 shows the Poincaré section for the attractor of
Fig. 5 in the y=0 plane. It shows fractal structure that is not
usually visible for the Lorenz system because its dimension
is very close to 2.0 for the standard parameters. The basin of
attraction includes the entire y=0 plane except for the line at
x=0, where the trajectory escapes to z=−	. Figure 7 shows
how the Kaplan-Yorke dimension varies with R in the cha-

FIG. 4. Attractor for the maximally chaotic normalized Lorenz system with
�=0.300, �=0.028, and 
=0.250.

FIG. 5. Attractor for the maximally complex Lorenz system with R
=3.4693.

FIG. 6. �Color online� Poincaré section at y=0 for the maximally complex
Lorenz system with R=3.4693.
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otic region along with numerous periodic windows as is typi-
cal for low-dimensional chaotic systems. This figure also il-
lustrates why a random search method is necessary to avoid
getting caught in one of the many local maximums, which
are even more numerous in a three-dimensional parameter
space.

V. RÖSSLER SYSTEM

The last case to be considered is the Rössler system14

given by

ẋ = − y − z, ẏ = x + ay, ż = b + z�x − c� . �10�

The parameters suggested by Rössler are a=b=0.2 and c
=5.7, which gives a Lyapunov exponent spectrum of �
= �0.0714, 0 , −5.3943� and a Kaplan-Yorke dimension of
DKY=1−�1 /�3=2.0132. Fortunately, this system is immune
to most of the difficulties encountered with the Lorenz sys-
tem except that both the maximum Lyapunov exponent and
the maximum Kaplan-Yorke dimension apparently occur just
before the orbits become unbounded �for example, by in-
creasing c slightly�, although such orbits occur without very
long-duration transients and are thus relatively easy to detect.
The optimization is straightforward using the method de-
scribed earlier except with a Runge-Kutta time step size of
0.02.

The Lyapunov exponent has its greatest value for a
=0.395, b=0.487, and c=8.164 where the Lyapunov expo-
nent spectrum is �= �0.248 92, 0 , −5.816 60� and the
Kaplan-Yorke dimension is DKY=2.042 80. Its attractor pro-
jected onto the xy plane as shown in Fig. 8 resembles the
familiar Rössler attractor with the usual parameters.

The Kaplan-Yorke dimension has its greatest value of
DKY=2.158 70 for a=0.6276, b=0.7980, and c=2.0104
where the Lyapunov exponent spectrum is �
= �0.102 99, 0 , −0.648 96�. Its attractor projected onto the
xy-plane as shown in Fig. 9 resembles the familiar Rössler
attractor except that it is somewhat more compact.

These parameters offer the opportunity to display the
fractal structure of the Rössler attractor in a Poincaré section,

something that is almost never done because the dimension
of the attractor is so very close to 2.0 for the usual param-
eters. There are infinitely many possible Poincaré sections
from which to choose, but Fig. 10 shows a slice through the
plane at z=z−

*, which is the plane in which lies one of the
equilibrium points given by �x* , y* , z*� with x�

=c /2±�c2 /4−ab=az�=−ay�. Also shown in the figure is the
basin of attraction, whose boundary apparently touches the
attractor at three points in this plane.

FIG. 7. Variation of the Kaplan-Yorke dimension with the parameter R for
the diffusionless Lorenz system in Eq. �8�.

FIG. 8. Attractor for the maximally chaotic Rössler system with a=0.395,
b=0.487, and c=8.164.

FIG. 9. Attractor for the maximally complex Rössler system with a
=0.6276, b=0.7980, and c=2.0104.
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VI. CONCLUSIONS

This paper has reported estimates of the parameters that
optimize the chaoticity and complexity �or strangeness� of a
number of common chaotic systems. For some purposes,
these parameters might be more suitable than the ones usu-
ally used. It offers a view of the attractors that is rarely seen.
The attractors resemble the conventional ones, but the higher

dimension especially allows one to see their fractal structure
much more easily. The method cannot guarantee that these
are the absolute best such parameters, but they provide a
close lower bound since the search involved many weeks of
around-the-clock computation for each case and multiple in-
stances of the random search converged on similar values.
Also, only positive values of the parameters were explored
since negative values in some sense represent a different sys-
tem. The method could be applied to other chaotic systems
for which there is an interest in such an optimization. In this
way, one can answer the question of how chaotic or how
complex the solution of a given mathematical system can be.
It might be desirable when reporting new chaotic systems to
perform such an optimization on their parameters as a stan-
dard and expected part of their characterization.
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FIG. 10. �Color online� Poincaré section at z=z−
* for the maximally complex

Rössler system with a=0.6276, b=0.7980, and c=2.0104.
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