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This paper is devoted to the analysis of a new simple rational map of the plane. Its dynamics are
described in some detail, along with some other dynamical phenomena. In particular, the map
under consideration is the first simple rational map whose fraction has no vanishing denominator
that gives chaotic attractors via a quasi-periodic route to chaos.
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1. Introduction

Chaos occurs in dynamical systems as a paradigm
phenomenon. Several examples of simple dynamical
systems display chaos. The simplicity of an equation
does not affect the high complexity of its dynamics.
Rational chaotic systems are rather rare in theory
and practice. In this paper, we present a new sim-
ple rational chaotic map along some of its dynam-
ical properties. In [Lu et al., 2004] the following
new 1-D discrete iterative system with a rational
fraction was discovered in a study of evolutionary
algorithms:

1
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where a is a parameter. The map (1) describes
different random evolutionary processes, and it is
much more complicated than the logistic system.

In [Chang et al., 2005] an extended version of
the former one-dimensional discrete chaotic system

g(z) =

given in [Lu et al., 2004] to two-dimensions is given
as follows:
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h(z,y) = 1 " (2)
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where a and b are parameters. The map (2) has
more complicated dynamical behavior than the one-
dimensional map (1).

Based on these studies in [Lu et al., 2004;
Chang et al., 2005], a new and very simple 2-D mabp,
characterized by the existence of only one ratio-
nal fraction with no vanishing denominator is con-
structed in this paper and is given by:

—ax
1+y?
x + by

f(.’L', y) = 3 (3)
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where a and b are the bifurcation parameters. First,
the new map (3) is algebraically simpler but with
more complicated behavior than map (2), and sec-
ond, it produces several new chaotic attractors
obtained via the quasi-periodic route to chaos. Dis-
crete maps have many applications in science and
technology [Chen & Dong, 1998; Scheizer & Hasler,
1996; Abel et al., 1997].

The essential motivation for this work is to pro-
vide a basic analysis of f and to give a detailed
study of its dynamics. Some basic dynamical behav-
iors of map (3) are investigated here by both theo-
retical analysis and numerical simulation.

2. Some Basic Properties

The new chaotic attractors described by map (3)
have several important properties such as:

(i) The map (3) is defined for all points in the
plane.

(i) The associated function f(z,y) of the map (3)
is of class C*°(R?), and it has no vanishing
denominator.

(ii) The new chaotic map (3) is symmetric
under the coordinate transformation (z,y) —
(—z,—y), and this transformation persists for
all values of the map parameters.

Briefly, the fixed points of map (3) are the real
solutions of the equations —axz/(1 + y?) = z and
z + by = y. Hence, one may easily obtain the equa-
tions (a+1+%2?)z = 0 and (1 —b)y = z. Assume in
this paper that —1 < a < 4. Then if b # 1, the only
fixed point of the map (3) is P = (0,0), and if b = 1,
then the y-axis is invariant by the iteration of the
map f. The Jacobian matrix of map (3) evaluated
at a point (z,y) is given by:

—a 2azy
Df(z,y)= | 1+¥* (1+yH? ). (4)
1 b

and at the fixed point P = (0,0), the Jacobian

matrix is given by Df(0,0) = (75 (;) The local sta-
bility of P is studied by evaluating the eigenvalues
of the Jacobian D f(P). The eigenvalues of D f(P)
are A\; = —a and Ay = b. Then one has the following

results:

(1) If |a| < 1 and |b] < 1, then P is asymptotically
stable.

(2) If |a| > 1 or |b| > 1, then P is an unstable fixed
point.
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(3) If a| < 1 and |b] > 1, or |a] > 1 and |b| < 1,
then P is a saddle point.

(4) If |a| = 1 or |b] = 1, then P is a nonhyperbolic
fixed point.

3. Numerical Simulations

3.1. Observation of chaotic

attractors

There are several possible ways for a discrete
dynamical system to make a transition from regu-
lar behavior to chaos. Bifurcation diagrams display
these routes and allow one to identify the chaotic
regions in ab-space from which the chaotic attrac-
tors can be determined. In this subsection, we will
illustrate some observed chaotic attractors, along
with some other dynamical phenomena.

3.2. Route to chaos

In [Chang et al., 2005] the chaotic attractors are
obtained via a period-doubling bifurcation route to
chaos as shown in Fig. 3(a). Possibly, the map (3) is
the first simple rational map whose fraction has no
vanishing denominator that gives chaotic attractors
via a quasi-periodic route to chaos.

3.3. Dynamical behavior with
parameter variation

In this subsection, the dynamical behavior of the
map (3) is investigated numerically. Figure 3(b)
shows regions of unbounded (white), fixed point
(gray), periodic (blue), quasi-periodic (green), and
chaotic (red) solutions in the ab-plane for the
map (3), where we use |LE| < 0.0001 as the cri-
terion for quasi-periodic orbits with 10° iterations
for each point. Figure 3(a) shows a similar plot
for the rational map (2) studied in [Chang et al.,
2005].

On the other hand, if we fix parameter b = 0.6
and vary —1 < a < 4, the map (3) exhibits the fol-
lowing dynamical behaviors as shown in Fig. 2(a):
In the interval —1 < a < 1, the map (3) converges
to the fixed point (0,0). For 1 < a < 2, it converges
to a period-2 attractor followed by a quasi-periodic
orbit for 2 < a < 3 as shown in Fig. 4(a). In the
interval 3 < a < 4, it converges to a chaotic attrac-
tor shown in Fig. 4(b) via a quasi-periodic route to
chaos except for a number of periodic windows. We
remark also the appearance of a singularity in the
LEs at a = 1.25, and b = 0.6.
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Fig. 1. Attractors of the map (3) with (a) a =24, b= 1.3, (b) a=29,b=106, (¢) a =29,b=08, (d) a =33, b= 04,
(e)a=4,b=08, ([)a=4,b=009.
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Fig. 2. (a) The quasi-periodic route to chaos for the map (3)
obtained for b = 0.6 and —1 < a < 4. (b) Variation of the
Lyapunov exponents of map (3) versus the parameter —1 <
a < 4 with b= 0.6.

For the map (3) there are dissipative as well
as area-expanding regions. Numerical calculations
show that the map (3) has dissipative orbits for
the regions shown in black in Fig. 5 and area-
expanding orbits for the regions shown in white
as determined from the sign of the numerical aver-
age of log|(ab + 2axy + aby?)/(y? + 1)?| over the
orbit on the attractor. If there are point attrac-
tors, both LEs must be negative, and hence there is
dissipation. There are also regions of hyperchaos,
for example, at a = 2.6, and b = 1.2. On the
other hand, it is well known that basin boundaries
arise in dissipative dynamical systems when two or
more attractors are present. In such situations, each
attractor has a basin of initial conditions that lead
asymptotically to that attractor. The sets that sep-
arate different basins are called the basin bound-
aries. In some cases the basin boundaries can have
very complicated fractal structure and hence pose
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an additional impediment to predicting long-term
behavior. For the map (3) we have calculated the
attractors and their basins of attraction on a grid
in ab-space where the system is chaotic. There is
a wide variety of possible attractors, only some of
which are shown in Figs. 1 and 4. Also, most of
the basin boundaries are smooth, and we note that
there are basins of attraction for b > 1, as shown
in Fig. 1(a), but evidently none for b < 1, i.e. the
basin of attraction is apparently the whole space.
There are some regular and chaotic regions in
ab-space where two coexisting attractors apparently
occur as shown in the black region of Fig. 6, essen-
tially inside the squares (a,b) € [2,4] x [0,1] and
(a,b) € [3,4] x [-1,0]. Figure 6 was obtained by
using 200 different random initial conditions and

(b)

Fig. 3. (a) Regions of dynamical behaviors in the ab-plane
for the rational map (2). (b) Regions of dynamical behaviors
in the ab-plane for the rational map (3).
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Fig. 4. Attractors of the map (3) (a) Quasi-periodic orbit
for a = 2.7, b = 0.6. (b) Chaotic orbit for a = 3.7,
b=0.6.

looking for cases where the distribution of the aver-
age value of z on the attractor is bimodal. Since
there is no rigorous test for bimodality, this was
done by sorting the 200 values of (z) and then divid-
ing them into two equal groups. The group with
the smallest range of (z) was assumed to represent
one of the attractors, and a second attractor was
assumed to exist if the largest gap in the values of
those in the other group was twice the range of the
first group.
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Fig. 5. The sign of the average of log|(ab + 2azy +
aby?)/(y? + 1)?| over the orbit on the attractors of the sys-
tem (3) in the ab-plane defines the regions of net expansion
and contraction.
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Fig. 6. The regions of ab-space with multiple attractors for
the map (3).

4. Conclusion

We have reported a new algebraically simple 2-D
discrete rational chaotic map with complicated
dynamics. The dynamical behavior of this map was
further investigated in some detail using both the-
oretical analysis and numerical simulation.
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