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Abstract

In this paper we introduce a new piecewise smooth mapping of the plane as

a unified discrete-time chaotic system that contains the original Hénon and Lozi

systems as two extremes and other systems as a transition in between and that has

robust homoclinic chaos over a portion of its key system parameters. Dynamical

behaviors of the unified system are investigated in some detail.
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1 Introduction

Discrete mathematical models arise directly from experiment or by the use of the Poincaré
section for the study of continuous models. Two of these models are the Hénon [1] and
Lozi [2] maps given by, respectively:

H(x, y) =

(

1 − ax2 + y
bx

)

and L(x, y) =

(

1 − a |x| + y
bx

)

. (1)

The H mapping gives a chaotic attractor called the Hénon attractor, which is obtained
for a = 1.4 and b = 0.3 as shown in Fig. 1(a). There are many papers that discuss the
original Hénon and Lozi maps such as [3-6]. Moreover, it is possible to change the form
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of the Hénon mapping H to obtain other chaotic attractors [2-7-8]. Applications of these
maps include secure communications using the notions of chaos [11-12]. The Lozi map L
is a 2-D invertible iterated map that gives a chaotic attractor called the Lozi attractor,
which is obtained for a = 1.4 and b = 0.3 as shown in Fig. 1(b). It is therefore interesting
to ask if there is a chaotic system that can unify these two chaotic systems and realize
the continued transition from one to the other. This paper provides a positive answer to
this question and reveals a surprising property of the transitional systems.

2 Robust chaos and its applications

Robust chaos is defined by the absence of periodic windows and coexisting attractors in
some neighborhood of the parameter space, since the existence of these windows in some
chaotic regions implies that small changes of the parameters would destroy the chaos.
This effect implies the fragility of this type of chaos. Contrary to this situation, there
are many practical applications such as in communications and spreading the spectrum
of switch-mode power supplies to avoid electromagnetic interference [13-14] where it is
necessary to obtain reliable operation in the chaotic mode and thus where robust chaos
is required. A practical example can be found from electrical engineering to demonstrate
robust chaos as shown in [10]. The occurrence of robust chaos in a smooth system is
proved and discussed in [16] along with a general theorem and a practical procedure for
constructing S-unimodal maps that generate robust chaos. This result is contrary to the
hypothesis that robust chaos cannot exist in smooth systems [10]. On the other hand,
many methods are used to search for a smooth and robust chaotic map, such as in [15],
where a one-dimensional smooth map that generates robust chaos in a large domain of
the parameter space is presented. In [17], simple polynomial unimodal maps that show
robust chaos are constructed. Other methods are given in [16-18].

3 The unified chaotic system that contains the Hénon

and the Lozi mappings

Since practical applications of chaos require the chaotic orbit to be robust, we introduce
in this paper a new unified chaotic system that reduces to the original Hénon and Lozi
systems [1-2] as two extremes and to other systems as a transition in between, and which
has robust homoclinic chaos over a portion of its key system parameters. The proposed
unified chaotic model is a piecewise smooth map of the plane defined by:

U (x, y) =

(

1 − 1.4fα (x) + y
0.3x

)

, (2)

where 0 ≤ α ≤ 1 is the bifurcation parameter and the function fα is given by:

fα (x) = α |x| + (1 − α)x2. (3)

It is easy to remark that for α = 0, one has the original Hénon map, and for α = 1,
one has the original Lozi map, and for 0 < α < 1, the unified chaotic map (2) is chaotic
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with different kinds of attractors. The Lyapunov exponents and bifurcation diagram are
shown in Fig. 2. We remark that the unified chaotic map (2) is a piecewise smooth map
and due to the shape of the vector field U of the unified chaotic map (2), the plane can
be divided into two regions denoted by:

D1 =
{

(x, y) ∈ R
2/ x < 0

}

(4)

D2 =
{

(x, y) ∈ R
2/ x > 0

}

. (5)

Let us define:
A =

{

(x, y) ∈ R
2/ x = 0

}

, (6)

which denotes a smooth curve that divides the phase plane into two regions D1 and D2,
so that the unified chaotic map (2) can be rewritten as follow:

U(x, y) =





{

1. 4 (α − 1) x2 + 1. 4αx + y + 1, if (x, y) ∈ D1

1. 4 (α − 1)x2 − 1. 4αx + y + 1, if (x, y) ∈ D2

0.3x



 , (7)

where in each of these regions the system (2) is a quadratic map. Notably, the unified
system (2) has some special features and advantages as follows:

(1) System (2) is chaotic when 0 ≤ α ≤ 1.
(2) System (2) connects the Hénon and the Lozi maps and realizes the entire transition

spectrum from one to the other.
(3) The control parameter α in system (2) reveals the evolution of dynamical behaviors

from the Hénon to the Lozi attractors.
(4) System (2) has robust chaotic attractors for 0.493122734 ≤ α < 1, while it is

absent for α = 0 and α = 1.

4 Numerical simulations

In this section, the dynamical behaviors of the unified chaotic system (2) will be inves-
tigated numerically. For 0 ≤ α ≤ 1, the unified chaotic system has two kinds of chaotic
orbits: Hénon-like chaotic attractors over the first portion of the interval [0, 1[ and a Lozi-
like chaotic attractor over the second portion of the interval ]0, 1] as shown in Fig. 3(a)
and (c). It seems that this phenomenon is related to the shape of the function fα, where
for values of α close to zero, the function fα given in (3) behaves like the quadratic term
x2, while the values of α close to unity the function fα behaves like the absolute value
function |x| , as shown in Fig. 3(b) and (d). This explains the occurrence of the two kinds
of chaotic attractors mentioned above.

5 A rigorous proof of the robustness of the homo-

clinic chaos

In this section, we begin by studying the existence of the fixed point of the U mapping
in order to determine the associated normal form for the unified chaotic map (2), which
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(a) (b)

Figure 1: (a) The original Hénon chaotic attractor obtained from the H mapping with its
basin of attraction (white) for a = 1.4 and b = 0.3. (b) The original Lozi chaotic attractor
obtained from the L mapping with its basin of attraction (white) for a = 1.4 and b = 0.3.

permits us to prove rigorously the occurrence of robust homoclinic chaos, where we exclude
the values α = 0 and α = 1 since both the Hénon and Lozi mapping are studied in detail
in several works and in the references therein. We will show that if 0 ≤ α < 1, then the
unified chaotic map (2) has two fixed points given by:

P1 = (x1, 0.3x1) ∈ D1 and P2 = (x2, 0.3x2) ∈ D2, (8)

where














x1 =
−0.7α+0.35+

√

−7. 56α+1. 96α
2+6. 09

2

1. 4(α−1)

x2 =
0.7α+0.35−

√

−3. 64α+1. 96α
2+6. 09

2

1. 4(α−1)
.

(9)

Obviously, the fixed points of the unified chaotic map (2) are the real solutions of the
system:

1 − 1.4fα (x) + y = x and y = 0.3x. (10)

Hence one may easily obtain the two equations:

1.4 (α − 1)x2 + (1.4α − 0.7)x + 1 = 0 for x < 0 and y = 0.3x (11)

1.4 (α − 1)x2 − (1.4α + 0.7) x + 1 = 0 for x > 0 and y = 0.3x. (12)

If 0 ≤ α < 1, then 1.4 (α − 1) < 0, and the discriminant of the first equation of (11) is
−7.56α+1.96α2 +6.09 > 0. Thus, one can easily conclude that the only negative solution
of the first equation of (11) is:

x1 =
−0.7α + 0.35 +

√

−7.56α+1.96α2+6.09
2

1.4 (α − 1)
< 0. (13)

On the other hand, the discriminant of the first equation of (12) is −3.64α + 1.96α2 + 6.
09 > 0 for all 0 ≤ α < 1. Thus, one can easily conclude that the only positive solution of
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Figure 2: (a) Variation of the Lyapunov exponents of the unified map (2) for 0 ≤ α ≤ 1.
(b) The bifurcation diagram of the unified chaotic map (2) for 0 ≤ α ≤ 1.

the first equation of (12) is:

x2 =
0.7α + 0.35 −

√

−3.64α+1.96α2+6.09
2

1.4 (α − 1)
> 0. (14)

Finally, the unified chaotic map (2) has two simultaneous fixed points defined for 0 < α <
1 as P1 = (x1, 0.3x1) ∈ D1 and P2 = (x2, 0.3x2) ∈ D2.

The Jacobian matrix of the unified chaotic map (2) evaluated at a point (x, y) in the
region D1 is given by:

J1 (x, y) =

(

1. 4α − 2. 8x + 2. 8xα 1
0.3 0

)

, (15)

and at a point (x, y) in the region D2 the Jacobian matrix is given by:

J2 (x, y) =

(

2. 8xα − 1. 4α − 2. 8x 1
0.3 0

)

. (16)

Thus, at P1 one has:

J1 (P1) =

(

0.7 +
√

1. 96α2 − 7. 56α + 6. 09 1
0.3 0

)

. (17)
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(a) (b)

(c) (d)

Figure 3: (a) The transition Hénon-like chaotic attractor obtained for the unified chaotic
map (2) with its basin of attraction (white) for α = 0.2. (b) The graph of the function
f0.2. (c) The transition Lozi-like chaotic attractor obtained for the unified chaotic map
(2) with its basin of attraction (white) for α = 0.8. (d) The graph of the function f0.8.

The eigenvalues of J1 (P1) are














λ1 =
√

1. 96α2
−7. 56α+6. 09+

√
1. 96α2

−7. 56α+1. 4
√

1. 96α2
−7. 56α+6. 09+7. 78

2
+ 0.35

λ2 =
√

1. 96α2
−7. 56α+6. 09−

√
1. 96α2

−7. 56α+1. 4
√

1. 96α2
−7. 56α+6. 09+7. 78

2
+ 0.35,

(18)

and at P2 one has:

J2 (P2) =

(

0.7 −
√

1. 96α2 − 3. 64α + 6. 09 1
0.3 0

)

. (19)

The eigenvalues of J2 (P2) are:














ω1 =
−

√

1. 96α2−3. 64α+6. 09+
√

1. 96α2−3. 64α−1. 4
√

1. 96α2−3. 64α+6. 09+7. 78

2
+ 0.35,

ω2 =
−

√

1. 96α2
−3. 64α+6. 09−

√
1. 96α2

−3. 64α−1. 4
√

1. 96α2
−3. 64α+6. 09+7. 78

2
+ 0.35,

(20)

In the case of two-dimensional piecewise smooth maps, it is possible to choose an appropri-
ate coordinate transformation so that the choice of axis is independent of the parameter.
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In so doing, the normal form of map (1) is given by [9]:

N(x, y) =























(

τ1 1
−δ1 0

)(

x
y

)

+

(

0
1

)

µ, if x < 0,

(

τ2 1
−δ2 0

)(

x
y

)

+

(

0
1

)

µ, if x > 0,

(21)

where µ is a parameter, and τi, δi, i = 1, 2 are the traces and determinants of the corre-
sponding matrices of the linearized map in the two subregion D1 and D2 evaluated at P1

and P2 respectively, and they are given by:







τ1 = 0.7 +
√

1. 96α2 − 7. 56α + 6. 09,

τ2 = 0.7 −
√

1. 96α2 − 3. 64α + 6. 09,
δ1 = δ2 = −0.3,

(22)

It is shown in [10] that a robust homoclinic chaos (i.e. the existence of an infinity of
homoclinic intersections between the two subregions D1 and D2 ) occurs in the piecewise
smooth map of the form (21) when:

{

τ1 > 1 + δ1, and τ2 < − (1 + δ2) ,
δ1 < 0, and − 1 < δ2 < 0,

(23)

and the condition:
λ1 − 1

τ1 − 1 − δ1
>

ω2 − 1

τ2 − 1 − δ2
, (24)

where the parameter range for boundary crisis is given by:

(λ2 − τ2)λ1 − τ1 + τ2 + δ1 > 0, (25)

because δ1 = δ2, where the inequality (25) determine the condition of stability of the
chaotic attractor. However, if the first condition (24) is not satisfied, then the condition
of existence of the chaotic attractor changes to:

ω2 − 1

τ2 − 1 − δ1

<
(τ1 − δ1 − λ2)

(τ1 − 1 − δ1) (λ2 − τ2)
, (26)

because δ1 = δ2. Finally, the formulas (18), (20), and (22), and the inequalities (23), (24),
and (25), or the inequalities (23), (25), and (26) if they are satisfied, determine rigorously
the region for the parameter α where the unified map (2) has robust homoclinic chaos.

6 Discussion

First, it is clear that the conditions of (23) are satisfied for all 0 < α < 1. Second, it is
difficult to solve rigorously the conditions for existence of the chaotic attractor (24) or
(26) and its condition for stability (25) since these inequalities contain complicated square
formulas. Hence, we use numerical estimates of the portion of the range 0 ≤ α < 1, for
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Figure 4: Critical curves corresponding to the conditions (24), (25) and (26).

which robust homoclinic chaos occurs in the unified piecewise smooth map (2). Here we
exclude the value α = 0, since there is no robust chaos in the Hénon map. We also exclude
the value α = 1, since both fixed points given in (9) are not defined for this value.

Second, let us consider the critical curves corresponding to the conditions (24), (25),
and (26) as follows:











C1 : λ1−1
τ1−1−δ1

− ω2−1
τ2−1−δ2

= 0,

C2 : (τ2 − λ2)λ1 + τ1 − τ2 − δ1 = 0,

C3 : ω2−1
τ2−1−δ2

− δ1(τ1−δ1−λ2)
(τ1−1−δ1)(δ2λ2−δ1τ2)

= 0,
(27)

From Fig. 4 we remark that the curve (C2) has an intersections with the axis y = 0, at
α = 0.0866592234, then conditions (24) holds for α ∈ [0, 0.0866592234] , while the curve
(C1) does not hits the axis y = 0, then conditions (25) does not holds for all 0 ≤ α < 1,
and the curve (C3) hits the axis y = 0 also one time at α = 0.493122734, then condition
(26) holds when α ∈ [0.493122734, 1[ , where the Newton method for finding roots of an
algebraic equation was used with an error of 10−6. Thus, the homoclinic chaos presented
by the unified chaotic map (2) is robust not stable when α ∈ [0.493122734, 1[ , because the
condition (25) does not hold in this interval. The chaotic attractor cannot be destroyed
by small changes in the parameters, since small changes in the parameters can only cause
small changes in the Lyapunov exponents. Hence, the percentage for the parameter
0 ≤ α < 1, in which the map (2) converges to a robust chaotic attractor is approximately
50.6 88 percent, this result is also verified numerically by computing Laypunouv exponents
and bifurcation diagram as shown in Fig. 2.

For α < 0.493122734, the chaos is not robust in some ranges of the variable α, because
there are numerous small periodic windows as shown in Figs. 5 (a), 5 (b) for example
the period-8 window at α = 0.025. Also, for α = 0.114, there is some periodic windows.
We remark, also the existence of some regions in the α−line where the largest Lyapunouv
exponent is positive, but this does not guaranty the unicity of the attractor, contrary
in the case where α ∈ [0.493122734, 1[, where there is guaranteed that the attractor is
unique, due to the analytical expressions (23), (24), (25), and (26). When α approaches
0, there is a break of smoothness and the dynamics is too chaotic and presents some
chaotic attractors very similar to the original Hénon attractor shown in Figs. 3 (a).
Finally, it is interesting and surprising that the unified system (2) has such a property
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Figure 5: (a) Variation of the Lyapunov exponents of the unified chaotic map (2) for
0.02 ≤ α ≤ 0.03. (b) The bifurcation diagram of the unified chaotic map (2) for 0.02 ≤
α ≤ 0.03, showing a period-8 attractor obtained for α = 0.025.

for an intermediate α while it was absent for α = 0 or α = 1 since the Hénon map
is a quasiattractor and the Lozi map is a Lorenz-type attractor. These types of chaotic
attractors have no robust homoclinic chaos over all portion of their key system parameters.

7 Conclusion

We have reported some results relevant to a new piecewise smooth 2-D discrete chaotic
map as a unified chaotic system that contains the original Hénon and the Lozi systems
as two extremes and other systems as a transition in between, and which has robust
homoclinic chaos over a portion of its key system parameters, while this property is absent
for the two systems at its extremes. Dynamics of piecewise continuous (smooth) mappings
are a newly emerging area of research, due to the absence of continuity (smoothness), exist
theories/methods in dynamical systems are not directly applicable, so new methods are
needed for this important area.
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Colloque C5, Supplément au n0 8, 39, 9-10, 1978.

[3] F. R, Maorotto, ”Chaotic behavior in the Hénon mapping,” Com. Math. Phys, 68,
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