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The Unified Chaotic System Describing the Lorenz and
Chua Systems

Zeraoulia Elhadj and Julien Clinton Sprott

Abstract: This paper introduces the dynamical behaviors of a unifiedimear chaotic

system which describes a two-family chaotic system cointgithe original Lorenz

and the original Chua systems as two extremes and some g#tens as a transition
in between via a new constructed joint function. This systamdisplay two kinds of

attractors, those with one scroll and those with two scrolls

Keywords: Unified system, double-scroll attractor, quasi-attrgdtorenz-type at-
tractor.

1 Introduction

HE discovery of chaos in three-dimensional smooth autonoragstems is due
to Lorenz [1] where he analyzes the following system:

X =0(y—x)
y =rx—y—-xz 1)
Z =—bz+xy

and obtains a typical chaotic attractor for:

8
o=10, r=28 bzé. (2)
Many other systems of three smooth autonomous ordinargrdiitial equa-

tions with two quadratic nonlinear terms have been founds€hnclude the Chen’s
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system [2] and the unified chaotic system which describega flamily of chaotic
systems containing the Lorenz and Chen systems as two edrand the LU sys-
tem as a transition in between [3]. These systems have mamhasproperties,
e.g. they are all dissipative systems and have at most threkbeia and two-scroll
chaotic attractors, and they possess Hopf and period-ithgubifurcations.

A new continuous-time, three-dimensional autonomousegyst presented
in [4]. This new system is capable of realizing the well-kmoguasi-attractors
and Lorenz-type strange attractors in three-dimensiantan@mous system as spe-
cial choices of some real function and eight bifurcatiorapagters; especially the
Lorenz [1], the Chen [2], the L [5], and the Chua [6] modets aebtained; in ad-
dition to other new chaotic attractors. This model is givgrhe following system

of equations:
X =a (y—h(x)
y =ax+by+az-axz 3)
Z=-azt+ax-ay

where(a ), i, andb are the bifurcation parameters amk) is some real function.
For example:

(1) Forh(x) =x,a3 =ay =0,b = —1, one has the Lorenz model [1].

(2) Forh(x) =x,a3 =ay = 0,a, = b— a;, one has the Chen model [3].

(3) Forh(x) =x,a, = ag = a7 =0, anday = 1, one has the LU model [4].

(4) Forh(x) = mx+ 3(mo—my) (]x+1| — [x—1|), anday; = ag = 1,84 = a5 =

as = 0,b = —1, one has the Chua model.
Observations of chaotic behavior in electrical circuittedaack to Van der Pol

in 1927 who reportedregular noise from his neon bulb circuit. The first proposed
real physical dynamical system capable of generating @habenomena in the

laboratory similar to those in the Lorenz system was inwriitg Chua [7] who
synthesized a simple third-order autonomous circuit glwen

X =a(y-h(x)
Y =x-y+z @
Z=—PBy
where
R0X) = (o — mw) (x| — e 1) ©

is the characteristic function. This system exhibits a miwalale variety of dynam-
ics and gives a chaotic attractor called tloeible-scroll attractor [6] obtained for:

a =935 p=1479, mo:—:—7L, mlzg. (6)
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There are several studies comparing Chua’s system and thaz_equation [8],
pointing out that Chua'’s system has several advantagestowdrorenz equation:
Chua’s system has only one nonlinearity with one variableemnas the Lorenz
system has two nonlinearities, each with two variablestiieamore, Chua’s circuit
is easy to build in the laboratory in contrast to the Lorersteay.

Strange attractors can be classified into three princigsels: hyperbolic,
Lorenz-type, and quasi-attractors. The hyperbolic attracare the limit sets for
which Smale’s “axiom A” is satisfied and are structurallyldg¢a Periodic orbits and
homoclinic orbits are dense and are of the same saddle tymeh\s to say that
they have the same index (the same dimension for their stattlauinstable man-
ifolds). However, the Lorenz-type attractors are not stmadly stable, although
their homoclinic and heteroclinic orbits are structuraitgble (hyperbolic), and no
stable periodic orbits appear under small parameter i@m@t The quasi-attractors
are the limit sets enclosing periodic orbits of differemdimgical types (for exam-
ple stable and saddle periodic orbits) and structurallyale orbits. For example,
the attractors generated by Chua’s circuit [6] (see Fig))&ssociated with saddle-
focus homoclinic loops are quasi-attractors. Note that type is more complex
than the above two attractors.

The principal motivation of this work is to develop and azaiya new unified
chaotic system which describes the original Lorenz and Glygtems as two ex-
tremes with some other systems as a transition in betweetogmesent the first
mathematical model that describes with one key paramethrtbe Lorenz system
as a Lorenz-type attractor and the Chua system as a quasitaitt

The paper is organized as follows: In the next section, thetheee-dimensional
system is presented. Some basic properties are given iln&&ctThe stability of
its equilibrium points are briefly discussed in Section 4Séction 5, the evolution
of the new system with respect to its key parameter is andlipgemeans of Lya-
punov exponents and bifurcation diagrams for an assocRoétcaré map. The
final section concludes the paper.

2 The Unified Model

The unified chaotic model is given by the following system @dfi&ions:
X = (—0.65u + 10) (y—hy (x))
Y = (—27u+28)x—y+ uz— (1— p)xz 7)

8
Z=(1-ppy—1479y— 2 (1-p)z

where we use the set of parameters (2) for the Lorenz systgen(lthe set of
parameters (6) for the Chua system (4) witke [0, 1] as a control parameter. The
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joint functionh,, is given by:

() = TRX B gy ©
which is a new proposed generalized characteristic fundbo the Chua’s diode
wherehj, is an odd and continuous piecewise linear function that ectsrthe two
complex systems. Then the model (7) is a continuous systéimtlvee nonlinear-
ities xy,xz, andhy(x), that with u = 0 reduces to the original Lorenz system and
with p = 1 reduces to the original Chua system.

The system (7) has at least two types of chaotic attractoenwhe [0, 1]:
Lorenz-type and quasi-attractors, because it connectsaitemz and the Chua sys-
tems and realizes the transition between them via the peolpjoént functionh,
given by (8). The control parametgrin system (7) allows the evolution of dynam-
ical behaviors from the Lorenz attractor to the Chua attradhe analytical study
of system (7) is difficult because it requires the solutiom dliird-order algebraic
equation at each step.

3 Some Basic Properties

Whenpu € ]0,1], the unified system (7) is not symmetric under the naturatdioo
nate transformsx,y,z) — (—x,—Yy,—2z) and(x,y,z) — (—X,—Y,2). Thus it does
not preserve the same symmetry properties of the Lorenz aod €ystems. Also
it is clear that thez-axis is not invariant. Therefore, the divergence of the flsw
given by:

10461 — 0.464 292 — %1, if x> 1
ox 9y o7 , 41
= ax tay Tz | WAT4m 0742800 -, f M <1 (9

41 )
10.46u — 0.464 22 — 3 if x<—1.
Thus if one has:

41 41
10.461 — 0.4642u? — - <0and 147451 - 0742 86u° — = <0 (10

ie.

0<u<097473 (1))
then the unified system (7) has a bounded, globally-atimget-limit set. Finally,
the unified system (7) is dissipative wher<Qu < 0.97473. Thus all trajectories
are ultimately confined to a specific subset having zero veluamd the asymp-

totic motion settles onto an attractor. This result has wasfirmed by computer
simulations.
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4 Equilibrium Points and Their Stability

The equilibria of the unified system (7) are given by:

B 3(1479u — 100+ 100k ) hy, (x)
P(x) = (x, hy (), 80001~ 1) , (12)
wherex is the solution of the equation:
(440u — 224— 216u?) x+s(X) hy (X) =0 13)

S(X) =8— 8 +47.37((p® — p) x+ p?) + (3p® — 6 +3) %
Note that the origin is an equilibrium point for all the syst@arameters, and also
that the number of equilibrium points depends mainly on gqung13) where the
possible number of its roots is between one and nine.
After some tedious calculations, one has that the variab#gisfies the follow-
ing equation:
X3+ po@ + pox+p3=0if x> 1, andu € [0,1]
x=0andx®+rix+r,=0if |x <1, andu € [0,1] — {0.875}  (14)
X3+ 01+ gox+ gz = 0 if x< —1 andu € [0,1]

where
_ 83.777u? — 35.121% — 48.656u
R LTy
_ 78.634u2 — 32.551% — 46.084)
AT YO 7NN T
0y 2984, — 216142612 — 54.137u3
3- R+ Fpu2-Hu
G 2384y — 216 13.534u° — 183 222
3= = Futgu as)
03— o — 242 - 20.301u° — 2
3— R+ 32—y
= 101 291/,:2 —54.137u® — 47.37u
FHE— U3 —Pu+3
- 2380, — 216159 492 — 54.137u3

THZ = U3 =P+ 3
d =2592— 13221 + 2862242 — 34618u° + 2548Qu*
—11044u° +21884u5.
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For the case wherg| < 1, the second equation of (14) has one solutipa- 0
if u€]0.841761]. Also, we remark that the first and the third equations of (14)
have no zero solutions becayze= —qz # 0 for all u € [0,1] . Finally, finding the
equilibria of the unified system (7) requires in each cassdhgion of a third-order
algebraic equation of the forne® + Ax? + Bx+C = 0, according to the position
of the variablex. By settingx = —A/3+w, we have:w® 4+ Pw+ Q = 0, where
P=—-A?2/3+BandQ=2A3/27— AB/3+C. If we setA = 4P3 + 27Q?, then if
A > 0, there is a unigue negative real solution:

A (o @ @\ (o [@ &
X——§+<—§+ ?4-2—7) +<—§— ?"‘2_7) > (16)

and if A < 0, there are three real solutions:

A . (0421
= _ S 17
Xo 3+2 3sm( 3 ) (17)
X; ——64—2 —Esm O+4n
3773 3 3

where6 = arcsin _fg,?z> €10,m.

The casé\ = 0 corresponds to a measure-zero set of parameters. Therejor
a slight perturbation of parameters, without changing tealior of the system, a
system belonging to one of the two cases is obtained.

Let us now examine the stability of the equilibria of the wedfisystem (7).
For this purpose, the Jacobian matrix at an equilibrium t@iix) given in (12) is
expressed by:

(0.65u —10)h, (x)  —0.65u + 10 0
J(P(X) = { j (%) -1 (M—D)x+u| (18)
(1-why (0 (1-p)x—-1479%  §(u-1)
where . >
1——p|x if [x>1
/ _ 7
W= e 7)

[ <
7 ,  ifx <1 (29)

[0 = (14437xu — 3%+ 3x? ) hy (X) — 216U + 224
- 8
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For studying the stability of these equilibria, the exadtugaof the eigenvalues
are obtained by using the Cardan method'’s given above feingptubic equations
A3+ A%+ BA +C =0, where:

11

, 3

B =&y, () + &y () + & (20)
C =&hy (X) + &shy () + &

A= (10— 0.65u) hy (x) — gu +

and
110

& =1.7333u%—29.05u + 5

15
&= <0.243 75u% —3.9938u + Z) X2+ (11.73u? — 180.46y) X

1579 832
€= (1 — 1P+ Too (M — 1)x— 27607 28553 — = 21)

&1 =b1xX% + box+bg

&5 =byx® + byx+ bs
&6 =46.8u° — 815 33u% + 151521 — %40
and
b _— (131 —200) (1 —1)*
e 20
— 1 (2566u2 — 4204Qu + 39475
250

80
by = —9.6135u% + 149.63u% — 28.4u + 3 (22)

by — (-1 (319::112 —49188 + 1000)
‘T 100
b — M (n—1)(13u —200)
20
Note that ifA > O, there is one real eigenvalue given by equation (16) and two
complex conjugate eigenvalues:

by =

A w i
()\C)i:—g—?RiE 4P + 3(WR)? (23)
where ) .
_(Q. [ P\ [ Q [ P’
WR—<—§+ 74'2—7 + —E— ?—F—? . (24)
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5 Numerical Simulation

In this section, the dynamical behaviors of the unified sys{é) with respect to
the variableu € [0,1] are investigated numerically where the bifurcation diagra
is obtained via an appropriate Poincaré sechatefined by:

s={(x2€R?/y=0,} (25)

with the resulting pointgxn },. computed using the Hénon method, and a set of
one of them is recorded after transients have decayed attdgiersus the desired
parameter as shown in Fig. 1(b). The calculations of linti séthe unified system

LLE| ‘Wﬂ

-100 | | 1
0 mu 1

()

Fig. 1. (a) Variation of the largest Lyapunov exponent of timfied system (7) versus

the parametep: € [0,1]. (b) Bifurcation diagram of the variabbe, plotted versus control
parametey € [0,1].

(7) were performed using a fourth-order Runge-Kutta atboriwith a constant
step sizeAt = 10~2 and initial conditiong—0.1, —0.1,—0.1). Then, to determine
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the long-time behavior and chaotic regions, we numericadyputed the largest
Lyapunov exponent. To see some chaotic behavior of the drsfistem (7), we

present various numerical results. We present here sonoéichdractors with all

the phase portraits shown in tke plane.

Fig. 1(a) shows the largest Lyapunov exponent of the unifystesn (7) with
respect to the parametgre [0, 1]. There are apparently several equilibrium zones,
several periodic zones, and at least four chaotic zonessmmonding to a positive
Lyapunov exponent. The Lorenz attractor obtainedufes 0, a stable equilibrium
for u = 0.1, a strange attractor fqu = 0.4, and a limit cycle obtained fop =
0.5 are shown in Figs. 2(a)-(d), respectively. Some additipeaodic orbits are
shown in Figs. 3(a)-(c) for larger values pfalong with the Chua chaotic attractor
obtained fory = 1 in Fig. 3(d).

50] T 50]

Fig. 2. Phase portraits of the unified system (7). (a) Themailg-orenz chaotic attractor
obtained foru = 0. (b) A stable equilibrium obtained fqu = 0.1. (c) Another chaotic
attractor obtained fop = 0.4. (d) A periodic orbit obtained fop = 0.5.

6 Remarks

Here are some concluding remarks about the dynamics of tiiedisystem (7)
concerning homoclinic and periodic orbits:
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Fig. 3. Phase portraits of system (7), where (a) and (b) anarécperiodic orbits obtained
for u =0.6,u = 0.8, andu = 0.9 respectively. (d) The original Chua chaotic attractor
obtained foru = 1.

1. There are no homoclinic orbits of the Shilnikov type fostgyn (7) contain-
ing the equilibrium point0,0,0) when 0< u < 1, because it is easy to show
numerically thatA < 0if 0 < u < 0.97526 andA > 0if 0.97526< u < 1.
Thus(0,0,0) is of a saddle-focus type whend526< u < 1, and the cal-
culation of the largest Lyapunouv exponent shows that thiednsystem
(7) converges to a chaotic orbit for9¥526< u < 1 as shown in Fig 1(a)
Hence there is no homoclinic orbit containing the equilibripoint(0,0,0)
that emerges from the Lorenz system to the Chua system.

2. Some periodic orbits do not result from a Hopf bifurcatiéor example, for
u = 0.6, the unified system (7) has a periodic orbit as shown in Hig). 3ts
equilibrium points are?; = (27.343 15.367,29.724) with the eigenvalues
{—=17109,—1.0417,16457} andP, = (—4.1214 —2.098020.695) with
the eigenvalueq—35.641 —0.9486629.031} and Py = (0,0,0) with the
eigenvalueqd —13.969 —0.841697.2526} .

3. Foru =0 andu =1, it is well known that there are regions of multiple
attractors, but for & u < 1, there are no observed regions of multiple at-
tractors.
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7 Conclusion

This paper introduces the dynamical behaviors of a unifiexbtith system that
can describe a two-family chaotic system containing thgimai Lorenz and the
original Chua systems as two extremes and some other syatems$ransition in
between via a new constructed joint function using a simaleble constant con-
troller. The unified system (7) has contributed to a betteteustanding of the
relationship between the Lorenz and Chua systems and ¢therééserves further
investigation.
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