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Many simple examples are now known of mathematical
models that exhibit chaos, and they have been extensively
studied. One of the oldest and simplest such systems is
the logistic map, which was originally used to model bio-
logical population dynamics but has now found applica-
tion in many other fields. In some ways it is the prototypi-
cal example of chaos in discrete-time systems (iterated
maps). Chaotic systems are usually characterized by one
or more parameters that control the behavior of the sys-
tem and give rise to bifurcations and other changes in the
dynamics. In most studies, these parameters are held con-
stant or allowed to take on a range of unchanging values,
whereas in the real world, the parameters governing the
dynamics often vary in time. Such cases have been stud-
ied very little. Here we consider a situation in which the
single parameter of the logistic map is modulated by the
output of a second logistic map whose parameter is con-
stant but can be adjusted. Thus we are able to explore
periodic and chaotic modulations of the first logistic map.
Despite the simplicity of the resulting model, the dynam-
ics exhibit extreme complexity. Some of the features of
this model are proved rigorously and tested numerically.

I. INTRODUCTION

The logistic equation is a well-known one-dimensional
map with the following form:

yn+1 = dyn�1 − yn� . �1�

Equation �1� was originally used to model population growth
in which the variable yn represents the fraction of the maxi-
mum population that the habitat can support.

In several previous studies, the parameter d was replaced
or modulated by some special forms, for example in Ref. 1,
the parameter d took two values driven by an external peri-
odic signal, or by a stochastic sequence in Ref. 2 or by a
sequence of multiple values in Ref. 3, where the onset of
chaos in such a modulated logistic map was studied. In Ref.
4, the effect of applying a periodic perturbation to an acces-
sible parameter of various chaotic systems �including the lo-
gistic map� was examined. Numerical results indicated that
perturbation frequencies near the natural frequencies of the

unstable periodic orbits of the chaotic systems can result in
limit cycles for relatively small perturbations. In Ref. 5 the
logistic map was modulated with the parameter d varied
through a delayed feedback mechanism. This type of modu-
lation gives the possibility of stabilizing the system to peri-
odic dynamics. However, in all the previous works, several
nonlinear phenomena are observed by numerical simulations,
and a few analytical results were obtained. The lack of
smoothness in some of the earlier works makes the study of
the resulting modulated map difficult. Our aim in this paper
is to find a simple nonlinear modulation of the parameter d
making the resulting map smooth and its dynamics depen-
dent on the history. The simplest way to implement this idea
is to modulate the forcing parameter d linearly by the signal
from another logistic map.

This paper is organized as follows: In the following sec-
tion, we discuss the model, and then in Sec. III we give
several rigorous results that explain the different dynamical
regimes resulting from the modulation. In Sec. IV, some nu-
merical simulations confirming the theory are given and dis-
cussed. The final section gives some conclusions.

II. THE MODULATED MAP

In this paper the controlling perturbation is taken as

d = b + cxn, �2�

where b and c are constant parameters, and xn is the solution
of another logistic map given by

xn+1 = axn�1 − xn� , �3�

where 0�a�4. The perturbation given by Eq. �2� makes the
system two-dimensional,

xn+1 = axn�1 − xn�, yn+1 = �b + cxn�yn�1 − yn� . �4�

However, the resulting structure of the system �4� can be
regarded as a combination of two one-dimensional maps for
the specific choice of the forcing function �2�. Hence, map
�4� can be regarded as a 2D map with the property that the
first equation does not depend on the second equation. The
result is a “master-slave” system.

The goal of this paper is to determine analytically and
numerically some predictions for the effect of the modulation
�2� on the logistic map �1� for some values of b and c. We
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will prove that the orbits of the modulated map �4� are
bounded, and in addition, for some values of b and c, the
original and the modulated logistic maps given, respectively,
by Eqs. �3� and �4� have identical bifurcation points.

The Jacobian matrix of the modulated map �4� is given
by

J�x,y� = �a�1 − 2x� 0

cy�1 − y� �b + cx��1 − 2y� � . �5�

Because the Jacobian matrix �5� is triangular, the Lyapunov
exponents are given by

�1 = limN→+�

1

N
�
n=1

N

ln a�2xn − 1�

�6�

�2 = limN→+�

1

N
�
n=1

N

ln�b + cxn��2yn − 1� .

We remark that �1 is independent of the choice of the param-
eters b and c, and is simply the Lyapunov exponent of the
logistic map �3�.

In the following we will prove some theorems in order to
demonstrate rigorously the occurrence of asymptotically
stable fixed points, periodic orbits, and chaotic orbits in the
modulated map �4�.

III. ANALYTICAL RESULTS

Proposition 1: For all n�N, and

0 � a � 4, 0 � x0 �
a

4
, �7�

one has

0 � xn �
a

4
. �8�

Because Proposition 1 is well known, its proof will be
omitted here.

Proposition 2: For all n�N, and

0 � a � 4,

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16
, �9�

0 � b � 4 −
ac

4
, 0 � c �

16

a
,

one has

0 � yn �
4b + ac

16
. �10�

Proof: First, for n=0, one has

0 � y0 �
4b + ac

16
.

Assume now by induction that

0 � yn �
4b + ac

16
.

Then one has for b�0 and c�0, that

16

4b + ac
�b + cxn�yn	4b + ac

16
− yn
 � 0.

Hence,

�b + cxn�yn	1 −
16

4b + ac
yn
 � 0.

On the other hand, we can rewrite yn+1 as follows:

yn+1 = �b + cxn�yn	1 −
16

4b + ac
yn


− �b + cxn�	1 −
16

4b + ac

yn

2 � 0,

because

0 � b � 4 −
ac

4

and

0 � c �
16

a
.

Second, the function h�y�= �b+cx�y�1−y� has a single maxi-
mum at y= 1

2 , and it is decreasing in the interval � 1
2 , � � be-

cause b+cx�b�0. Thus one has for all x�� 1
2 , � �, that

h�y� � h	1

2

 =

b + cx

4
�

4b + ac

16
,

and increasing in the interval �− � , 1
2 �. Thus one has that

h�y� � h	1

2

 �

4b + ac

16
,

i.e.,

yn �
4b + ac

16
.

As a result, from Propositions 1 and 2, one has that the
trajectories of the modulated map �4� are bounded.

Proposition 3: For all n�N, and

0 � a � 4,

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16
�11�

0 � b � 4 −
ac

4
, 0 � c �

16

a
,

one has

��xn,yn��2 �
8abc + 16a2 + 16b2 + a2c2

256
. �12�

Proof: We have
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��xn,yn��2 = �xn
2 + yn

2 �
8abc + 16a2 + 16b2 + a2c2

256
.

Theorem 4: If

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16

�13�

0 � a � 4, 0 � c �
16

a
, 0 � b � 4 −

ac

4
,

then one has

�2 � ln
�4b + ac + 8��4b + ac�

32
. �14�

Proof: We have

�2yn − 1� � 2�yn� + 1 �
4b + ac + 8

8

and

�b + cxn� � b +
ca

4
.

Thus one has

�2 � ln
�4b + ac + 8��4b + ac�

32
.

Theorem 5: �1� The modulated map �4� is asymptoti-
cally stable if

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16

�15�

0 � a � 3, 0 � b � �3 −
1

4
ac − 1, 0 � c �

4��3 − 1�
a

.

�2� The modulated map �4� is almost periodic if

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16

3 � a � 3.569 945 7, 0 � b � �3 −
1

4
ac − 1, �16�

0 � c �
4��3 − 1�

a
.

�3� The modulated map �4� is almost chaotic if

0 � x0 �
a

4
, 0 � y0 �

4b + ac

16

3.569 945 7 � a � 4, 0 � b � �3 −
1

4
ac − 1, �17�

0 � c �
4��3 − 1�

a
.

Proof: �1� The modulated map �4� is asymptotically

stable if �1�0 and �2�0, and this is possible if 0�a�3
and

�4b + ac + 8��4b + ac�
32

� 1,

i.e., 0�b��3− 1 / 4ac−1 and

0 � c �
4��3 − 1�

a
.

�2� The modulated map �4� is periodic if �1=0 and �2

�0, and this is possible if 3�a�3.569 945 7 and

�4b + ac + 8��4b + ac�
32

� 1,

i.e., 0�b��3− 1
4ac−1 and 0�c�

4��3−1�

a .
�3� The modulated map �4� is chaotic if �1�0 and �2

�0, and this is possible if 3.569 945 7�a�4 and

�4b + ac + 8��4b + ac�
32

� 1,

i.e., 0�b��3− 1
4ac−1 and 0�c�

4��3−1�

a .�
Theorem 6: If

�b,c� � 0,�3 −
1

4
ac − 1� � �0,

4��3 − 1�
a

� = J , �18�

then the onset of chaos in the modulated logistic map �4� is
the same as in the logistic map, i.e., (3) the critical value of
a is seen to be 3.569 945 7, where periodicity just ends �the
accumulation point�.

Proof: The first Lyapunov exponent of the modulated
map �4� is exactly the same as for the logistic map �3� and
does not depend on the variable yn, and the second Lyapunov
exponent is negative when �b ,c��J.�

Let us define the following subsets:

I1 = 
a � R/�1 � 0�, I2 = 
a � R/�1 = 0� ,

I3 = 
a � R/�1 � 0�, J1 = 
�b,c� � R2/�2 � 0� , �19�

J2 = 
�b,c� � R2/�2 = 0�, J3 = 
�b,c� � R2/�2 � 0� ,

and let q and p indicate fixed points for the logistic map �3�
and the second component of the modulated map �4�, respec-
tively, and let �xn�n�N

Periodic and �yn�n�N
Periodic indicate periodic or-

bits for the logistic map �3� and the second component of the
modulated map �4�, respectively, and let �xn�n�N

Chaotic and
�yn�n�N

Chaotic indicate chaotic orbits for the logistic map �3� and
the second component of the modulated map �4�, respec-
tively. Hence, because the first Lyapunov exponent �1 de-
pends only on the variable xn, then we can classify the solu-
tions of the modulated map �4� as follows:
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�q,p�, if �a,b,c� � I1 � J1,

�q,�yn�n�N
Periodic�, if �a,b,c� � I1 � J2,

�q,�yn�n�N
Chaotic�, if �a,b,c� � I1 � J3,

��xn�n�N
Periodic,p�, if �a,b,c� � I2 � J1,

��xn�n�N
Periodic,�yn�n�N

Periodic�, if �a,b,c� � I2 � J2, �20�

��xn�n�N
Periodic,�yn�n�N

Chaotic�, if �a,b,c� � I2 � J3,

��xn�n�N
Chaotic,p�, if �a,b,c� � I3 � J1,

��xn�n�N
Chaotic,�yn�n�N

Periodic�, if �a,b,c� � I3 � J2,

��xn�n�N
Chaotic,�yn�n�N

Chaotic�, if �a,b,c� � I3 � J3.

�1� If �a ,b ,c�� �I1�J1�� �I2�J1�� �I3�J1�, then the
effect of the modulation �2� is a stabilization procedure via,
respectively, fixed, periodic, and chaotic modulations.

�2� If �a ,b ,c�� �I1�J2�� �I2�J2�� �I3�J2�, then the
effect of the modulation �2� is a control procedure via respec-
tively fixed point, periodic, and chaotic modulations.

�3� If �a ,b ,c�� �I1�J3�� �I2�J3�� �I3�J3�, then the
effect of the modulation �2� is a chaotification procedure via,
respectively, fixed, periodic, and chaotic modulation.

IV. NUMERICAL SIMULATIONS

Because the basin of attraction depends on the param-
eters a, b, and c, we must fix these parameters and then
calculate the limit sets using appropriate initial conditions.
The effect of the modulation given by Eq. �2� can be sum-
marized in three procedures: stabilization, control, and chao-
tification. Each procedure can be achieved via three types of
modulation, namely, fixed-point modulation, periodic modu-
lation, and chaotic modulation. We will give in this section
examples for each case, showing their respective effects. As
an example, for the stabilization procedure via fixed point
modulation when a=2, then one has 0�x0�0.5, 0�y0

�0.25b+0.125c, 0�b�0.732 05−0.5c, and 0�c
�1.464 1. Assuming that c=1, one has 0�b�0.232 05 and
0�y0�0.25b+0.125, and so, for b=0.2, one has 0�y0

�0.175. Hence, we choose x0=y0=0.01. The corresponding
orbit is the stable fixed point �0,0�. For a=3.2, one has 0
�x0�0.8, 0�y0�0.18,0�b�0.092 05, and 0�c
�0.915 06. Assume that c=0.8 and b=0.08. Hence, we
choose x0=y0=0.01. The corresponding orbit is

�0.513 04,0� , �0.799 46,0��, i.e., it is a period-2 orbit. Gen-
erally, for a=am, where am ,m=0,1 ,2 , . . . are the values of a
for which the logistic map �3� has periodic orbits, and

0 � x0 �
am

4
, 0 � y0 �

4b + amc

16
,

0 � b � �3 −
1

4
amc − 1,

and

0 � c �
4��3 − 1�

am

for all m=0,1 ,2 , . . ., then the corresponding orbit is the
period-m orbit given by 
�xi ,0�1�i�m�. This procedure is the
stabilization procedure via periodic modulation. Third, for
a=3.6, one has 0�x0�0.9, 0�y0�0.25b+0.225c, 0�b
�0.732 05−0.9c, and 0�c�0.813 39. For c=0.8, one has
0�b�0.012 05 and 0�y0�0.25b+0.18, and so, for b
=0.01, one has 0�y0�0.182 5. Hence, we choose x0=y0

=0.01. The corresponding orbit is 
�xn ,yn=0��n�N, indicating
a stabilization procedure via chaotic modulation.

Now Figs. 1�c�, 1�b�, and 2�c� show, respectively, the
following phenomena: If a=2, b=−2, and c=2, then the lo-
gistic map �3� converges to a fixed point, and the second
component of the modulated map �4� converges to a stable
period-4 orbit. If a=3.2, b=3.5, and c=0.5, then the logistic
map �3� converges to a period-2 orbit, and the second com-
ponent of the modulated map �4� converges to a stable
period-2 orbit. If a=3.6, b=−2, and c=2, then the logistic
map �3� converges to a chaotic orbit, and the second compo-
nent of the modulated map �4� converges to a stable period-1

FIG. 1. �a� Bifurcation diagram of the logistic map �3� for 0�a�4. �b�
Bifurcation diagram of the modulated logistic map �4� for 0�a�4 and b
=3.5,c=0.5. �c� Bifurcation diagram of the modulated logistic map �4� for
0�a�4 and b=4,c=−1.
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orbit. These effects are respectively the control procedure via
fixed-point modulation, the control procedure via periodic
modulation, and the control procedure via chaotic modula-
tion. On the other hand, Figs. 2�c�, 3�c�, and 1�b� show, re-
spectively, the following phenomena: If a=0.5, b=−2, and
c=2, then the logistic map �3� converges to a fixed point
orbit, and the second component of the modulated map �4�
converges to a chaotic orbit. If a=3.2, b=1.6, and c=3, then
the logistic map �3� converges to a period-2 orbit, and the
second component of the modulated map �4� converges to a
chaotic orbit. If a�3.569 945 7, b=3.5, and c=0.5, then the
logistic map �3� converges to a chaotic orbit, and the second
component of the modulated map �4� converges also to a
chaotic orbit. These effects are respectively the chaotification
procedure via fixed-point modulation, the chaotification pro-
cedure via periodic modulation, and the chaotification proce-
dure via chaotic modulation.

Note that some examples of chaotic and hyperchaotic
orbits with their basins of attraction �in white� obtained from
the modulated map �4� are shown in Fig. 3.

V. DISCUSSION

Most of the results of linearly modulating the parameter
of the logistic map by the output of another logistic map can
be classified as follows: First, the modulation �2� makes the
dynamics of the modulated logistic map similar to the origi-
nal logistic map, for example if b=3.5 and c=0.5, the dy-
namics over the range 0�a�4 of the modulated map �4� is
clearly similar to the one for the logistic map �3� as shown in
Figs. 1�a� and 1�b�. Second, the modulation produces a
period-halving bifurcation sequence leading to stable limit
cycles after chaos, without the production of period-doubling
bifurcations as shown in Fig. 2�c� obtained for b=−2,c=2,
and 0�a�4. Third, the modulation �2� produces a period-
halving bifurcation sequence leading to stable limit cycles
after chaos and produces a period-doubling bifurcation se-
quence leading to a chaotic attractor as shown in Fig. 1�c�
obtained for b=4,c=−1, and 0�a�4. The fourth effect is
that the modulation makes the dynamics of the modulated
logistic map �4� identical to the original logistic map �1�.
This case is analytically proved for some regions in the a-b-c
space. Indeed, the system in Eq. �4� is of a standard master-
slave type of the form

xn+1 = axn�1 − xn� = f�xn� , �21�

yn+1 = �b + cxn�yn�1 − yn� = g�xn,yn� . �22�

FIG. 2. �a� Bifurcation diagram of the logistic map �3� for 0�a�4. �b�
Bifurcation diagram of the modulated logistic map �4� for 0�a�4 and b
=−1,c=4. �c� Bifurcation diagram of the modulated logistic map �4� for 0
�a�4 and b=−2,c=2.

FIG. 3. �Color online� �a� Hyperchaotic orbit with its basin of attraction �in
white� obtained from the modulated map �4� for a=3.6, b=3.5, c=0.5. �b�
Chaotic orbit obtained from the modulated map �4� for a=0.5, b=−2, c=2.
�c� Chaotic orbit with its basin of attraction �in white� obtained from the
modulated map �4� for a=3.2, b=1.6, c=3. �d� Hyperchaotic orbit with its
basin of attraction �in white� obtained from the modulated map �4� for a
=3.6, b=4, c=−1.
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The drive f�xn� is unaffected by the response g�xn ,yn�.
Such systems show generalized synchronization in nonin-
vertible maps,6 because the driving system �21� is noninvert-
ible. The method of Ref. 6, which is based on the auxiliary
system approach given in Ref. 7 is applied here, then one has
that the generalized synchronization is monotonically stable
if for all a , b, and c one has

2cxnyn − cxn − 1 � b�1 − 2yn� � 2cxnyn − cxn + 1. �23�

Assuming c�0, then one has 2cxnyn−cxn−1
�− 1

4 �ac+4�, and

2cxnyn − cxn + 1 �
4abc + a2c2 + 32

32
.

Thus Eq. �23� becomes

−
1

4
�ac + 4� � b�1 − 2yn� �

4abc + a2c2 + 32

32
. �24�

From Eq. �10� we have

−
�4b + ac − 8�

8
� 1 − 2yn � 1.

Then if

0 � b � 2 −
ac

4
,

one has

0 � −
�4b + ac − 8�

8
� 1 − 2yn � 1.

Hence, one has

−
1

4
�ac + 4� � b �

− �4abc + a2c2 + 32�
4�4b + ac − 8�

,

and this inequality holds for all

0 � b � 2 −
ac

4
.

Other conditions on a , b, and c are obtained in which Eq. �9�
holds. Finally, the following Theorem has been proved:

Theorem 7: If

0 � a � 4,

0 � x0 �
a

4
, 0 � y0 � min	4b + ac

16
,
1

2

 , �25�

max	0,4y0 −
ac

4

 � b � 2 −

ac

4
, 0 � c �

16

a
,

then the generalized synchronization is monotonically stable.
As a test of this result, assume that b=1,c=0.5,x0=y0

=0.01, and 0�a�4. Figure 4 shows that both the driving
and the response systems given by Eqs. �21� and �22� have
identical oscillations for all 0�a�4. This situation includes
the case a=4, where the orbit occasionally gets stuck in
some very high periodic cycle and never reaches zero.

On the one hand, Fig. 5�a� shows regions of unbounded
�white�, fixed point �gray�, periodic �blue�, and chaotic �red�

FIG. 4. The driving xn and the response yn have identical bifurcations for
b=1, c=0.5, x0=y0=0.01, and 0�a�4.

FIG. 5. �Color online� �a� Regions of dynamical behaviors in the ab-plane
with c=0.5 for the modulated map �4�. �b� The regions of ab-space with c
=0.5 for multiple attractors �in black� and the regions of unbounded attrac-
tors �in gray� and the regions of single attractors �in white� for the modu-
lated map �4�.
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solutions in the ab-plane with c=0.5 for the modulated map
�4�, where we use 106 iterations for each point.

On the other hand, an important phenomenon in the
modulated map �4� is that the dynamics are multistable, i.e.,
multiple attractors can coexist. Indeed, Fig. 5�b� shows re-
gions for multiple attractors �in black�, regions of unbounded
attractors �in gray�, and regions of single attractors �in white�
for the modulated map �4�. A simple comparison between
Figs. 5�a� and 5�b� shows that fixed points, periodic, and
chaotic orbits of the modulated map �4� can coexist with
other attractors, and the coexistence is very clear in the bands
�a ,b�� �3,3.7�� �−2,−1.6� and �a ,b�� �3,3.7�� �2.5,3.1�,
where both periodic and chaotic attractors coexist in all three
combinations: chaotic-periodic, chaotic-chaotic, and
periodic-periodic.

VI. CONCLUSION

The effect of applying a modulation derived from one
logistic map to the accessible parameter of a second logistic

map was examined. Rigorous analytical and numerical re-
sults provided predictions for the effect of this type of modu-
lation.
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