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Abstract This paper offers an overview of some impor-
tant issues concerning the robustness of chaos in dynam-
ical systems and their applications to the real world.

Keywords robust chaos, theories, methods, real appli-
cations

PACS numbers 05.45.-a, 05.45.Gg

Chaotic dynamical systems display two kinds of chaotic

attractors: One type has fragile chaos (the attractors

disappear with perturbations of a parameter or coexist

with other attractors), and the other type has robust

chaos, defined by the absence of periodic windows and

coexisting attractors in some neighborhood of the pa-

rameter space. The existence of these windows in some

chaotic regions means that small changes of the param-

eters would destroy the chaos, implying the fragility of

this type of chaos.

Contrary to this situation, there are many practical

applications, such as in communication and spreading

the spectrum of switch-mode power supplies to avoid

electromagnetic interference [15, 16], where it is neces-

sary to obtain reliable operation in the chaotic mode, and
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thus robust chaos is required. Another practical exam-

ple can be found in electrical engineering where robust

chaos is demonstrated in Ref. [13]. The occurrence of

robust chaos in a smooth system is proved and discussed

in Ref. [2], which includes a general theorem and a prac-

tical procedure for constructing S-unimodal maps that

generate robust chaos. This result contradicts the con-

jecture that robust chaos cannot exist in smooth systems

[13]. On the other hand, there are many methods used

to search for a smooth and robust chaotic map, for ex-

ample in Refs. [1−5], where a one-dimensional smooth

map that generates robust chaos in a large domain of

the parameter space is presented. In Ref. [6], simple

polynomial unimodal maps that show robust chaos are

constructed. Other methods and algorithms are given in

the discussion below.

This paper is organized as follows. In the following

section, we first discuss robust chaos, its theories and

applications, and then give in Section 3 several rigor-

ous, numeric, and experimental results that explain the

different methods for the generation of robust chaos in

dynamical systems. The final section concludes the pa-

per.

The past decade has seen heightened interest in the ex-

ploitation of robust chaos for applications to engineering

systems. Since there are many areas for applications

of robust chaos, we concentrate on two examples of ap-

plications of robust chaos in the real world. The first

is given in Ref. [41], which suggests a new approach

(with experiments, statistical analysis, and key space
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analysis) for image encryption based on a robust high-

dimensional chaotic map. The new scheme employs the

so-called cat map to shuffle the positions and then con-

fuses the relationship between the cipher-image and the

plain-image by using the high-dimensional preprocessed

Lorenz chaotic map. This work shows that the proposed

image encryption scheme provides an efficient and secure

means for real-time image encryption and transmission.

The second example is given in Ref. [54], which uses the

notion of robust chaos in another new encryption scheme.

A recent bibliography on the applications of robust chaos

in the real world are collected in these papers [11, 13, 15,

16, 21, 30, 41−43, 48−51, 58, 60−66, 77−80].

3.1 Robust chaos in 1-D maps

In this section, we give several methods to generate ro-

bust chaos in 1-D (one-dimensional) maps.

3.1.1 Robust chaos in 1-D piecewise-smooth maps

As an example of the occurrence of robust chaos in 1-D

piecewise-smooth maps, the following model of networks

of neurons with the activation function f(x) = | tanh

s(x− c)| is studied in Ref. [43], where it was shown that

in a certain range of s and c the dynamical system

xk+1 = | tanh s(xk − c)| (1)

cannot have stable periodic solutions, which proves the

robustness of chaos.

3.1.2 Robust chaos in 1-D smooth maps

The robustness of chaos in the sense of the above defi-

nition is expected to be relevant for any practical appli-

cations of chaos, and it was shown to exist in a general

family of piecewise-smooth two-dimensional maps, but

was conjectured to be impossible for smooth unimodal

maps [8−13]. However, it is shown in Ref. [1, 2], respec-

tively, that the following 1-D maps have robust chaotic

attractors:

f (x, α) =
1− xα − (1− x)

α

1− 21−α

f (φ (x) , v) =
1− v±φ(x)

1− v±φ(c)
(2)

where α, v are bifurcation parameters and φ (x) is uni-

modal with a negative Schwarzian derivative (but not

necessarily chaotic), and c is the critical point of φ (x) ,

i.e. φ̇ (c) = 0.

Also in Ref. [5], the following map is shown to be ro-

bust:

fm,n (x, a) = 1− 2 (axm + bxn) (3)

where 0 6 a 6 1, b = 1 − a, and m, n are even and > 0.

On the other hand, it is known that a map ϕ : I −→ I is

S-unimodal on the interval I = [a, b] if: (a) The function

ϕ(x) is of class C3, (b) the point a is a fixed point with

b its other preimage, i.e. ϕ(a) = ϕ(b) = a, (c) there is a

unique maximum at c ∈ (a, b) such that ϕ(x) is strictly

increasing on x ∈ [a, c) and strictly decreasing on x ∈
(c, b] , and (d) ϕ has a negative Schwarzian derivative,

i.e.,

S(ϕ, x) =
ϕ′′′(x)

ϕ′(x)
− 3

2

[

ϕ′′ (x)

ϕ′ (x)

]2

< 0 (4)

for all x ∈ I − {y, ϕ′ (y) = 0} . Since what matters is

only its sign, one may as well work with the product:

Ŝ (ϕ, x) = 2ϕ′ (x) ϕ′′′ (x)− 3 [ϕ′′ (x)]
2

(5)

which has the same sign as S (ϕ, x) .

The importance of S-unimodal maps in chaos theory

comes from the theorem given in Ref. [7] that each at-

tracting periodic orbit attracts at least one critical point

or boundary point. Thus, as a result, an S-unimodal

map can have at most one periodic attractor which will

attract the critical point. This result is used to formulate

the following theorem with its proof given in Ref.[2]:

Theorem 1 Let ϕv(x): I = [a; b] −→ I be a para-

metric S-unimodal map with the unique maximum at

c ∈ (a; b) and ϕv(c) = b, ∀ v ∈ (vmin, vmax), then ϕv(x)

generates robust chaos for v ∈ (vmin, vmax).

This theorem gives the general conditions for the oc-

currence of robust chaos in S-unimodal maps, but it does

not give any procedure for the construction of the S-

unimodal map ϕv(x). A procedure for constructing S-

unimodal maps that generate robust chaos from the com-

position of two S-unimodal maps is given in [2, 4–6].

A 1-D generalization of the well known logistic map

[7] is proposed and studied in Ref. [53]. The generalized

map is referred to as the β-exponential map, and it is

given by

GL (β, x) =
β − xβx − (1− x) β1−x

β −
√

β
, 0 6 x 6 1, β > 0

(6)

where β is the adjustable parameter. It was proved that

the map (6) exhibits robust chaos for all real values of
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the parameter β > e−4.

Another example of robust chaos is found in Ref. [21],

where the robust chaos was identified in a family of dis-

counted dynamic optimization problems in economics

(with verification of some properties such as monotonic-

ity and concavity of the return functions and the ag-

gregative production function) in which the immediate

return function depends on current consumption, capi-

tal input, and a taste parameter. It was shown also that

the optimal transition functions are represented by the

quadratic family, well-studied in the literature on chaotic

dynamical systems.

An hierarchy of many-parameter families of maps

on the interval [0,1] having an analytic formula of the

Kolmogorov–Sinai entropy was introduced in Ref. [6].

These types of maps do not have period-doubling or

period-ntupling cascade bifurcations to chaos, but they

have single fixed-point attractors in certain regions of

parameters space where they bifurcate directly to chaos

at exact values of the parameters without the period-n

tupling scenario.

3.1.3 Robust chaos in 1-D singular maps

These types of 1-D singular maps play a key role in the

theory of up-embedability of graphs [76]. In Ref. [70],

the critical behavior of the Lyapunov exponent of a 1-D

singular map (which has only one face on a surface) near

the transition to robust chaos via type-III intermittency

was determined for a family of one-dimensional singular

maps. The calculation of critical boundaries separating

the region of robust chaos from the region of stable fixed

points was given and discussed.

3.2 Robust chaos in 2-D piecewise smooth maps

Power electronics is an area with wide practical applica-

tion [11–14, 40, 47, 77]. It is concerned with the problem

of the efficient conversion of electrical power from one

form to another.

Power converters [40, 77] exhibit several nonlinear

phenomena such as border-collision bifurcations, coex-

isting attractors (alternative stable operating modes or

fragile chaos), and chaos (apparently random behavior).

These phenomena are created by switching elements

[40]. Recently, several researchers have studied border-

collision bifurcations in piecewise-smooth systems [11–

14, 40, 47, 77]. Piecewise-smooth systems can exhibit

classical smooth bifurcations, but if the bifurcation oc-

curs when the fixed point is on the border, there is a dis-

continuous change in the elements of the Jacobian matrix

as the bifurcation parameter is varied. A variety of such

border-collision bifurcations have been reported in this

situation [11, 12, 14]. In Refs. [13, 77] and under certain

conditions, border-collision bifurcations produce robust

chaos.

Let us consider the following 2-D piecewise smooth

system given by

g(x, y; ρ) =















g1 =

(

f1(x, y; ρ)

f2(x, y; ρ)

)

, if x < S(y, ρ)

g2 =

(

f1(x, y; ρ)

f2(x, y; ρ)

)

, if x > S(y, ρ)















(7)

where the smooth curve x = S(y, ρ) divides the phase

plane into two regions R1 and R2, given by

R1 =
{

(x, y) ∈ R
2, x < S(y, ρ)

}

(8)

R2 =
{

(x, y) ∈ R
2, x > S(y, ρ)

}

(9)

It is assumed that the functions g1 and g2 are both con-

tinuous and have continuous derivatives. Then the map

g is continuous, but its derivative is discontinuous at the

borderline x = S(y, ρ). It is further assumed that the

one-sided partial derivatives at the border are finite and

in each subregion R1 and R2, the map (7) has one fixed

point P1 and P2, respectively, for a value ρ∗ of the pa-

rameter ρ. There are six types of fixed points for the

linearized system of the map (7) when the determinant

of the Jacobian matrix is positive. The following result

is proved in Ref.[14]:

Theorem 2 When the eigenvalues at both sides of

the border are real, if an attracting orbit exists, it is

unique (i.e., coexisting attractors cannot occur).

It is shown in Ref. [12] that the normal form of the

map (7) is given by

N(x, y)

=



























(

τ1 1

−δ1 0

)(

x

y

)

+

(

1

0

)

µ, if x < 0

(

τ2 1

−δ2 0

)(

x

y

)

+

(

1

0

)

µ, if x > 0

(10)

where µ is a parameter and τi, δi, i = 1, 2 are the traces

and determinants of the corresponding matrices of the

linearized map in the two subregions R1 and R2 evalu-

ated at P1 (with eigenvalues λ1,2) and P2 (with eigenval-

ues ω1,2), respectively. Now it is shown in Refs. [13, 77]

that the resulting chaos from the 2-D map (7) is robust

in the following cases:
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3.2.1 Case 1
{

τ1 > 1 + δ1, and τ2 < − (1 + δ2)

0 < δ1 < 1, and 0 < δ2 < 1
(11)

where the parameter range for boundary crisis is given

by:

δ1τ1λ1 − δ1λ1λ2 + δ2λ2 − δ1τ2 + δ1τ1 − δ2
1 − λ1δ1 > 0

(12)

where the inequality (12) determines the condition for

stability of the chaotic attractor. The robust chaotic

orbit continues to exist as τ1 is reduced below 1 + δ1.

3.2.2 Case 2























τ1 > 1 + δ1, and τ2 < − (1 + δ2)

δ1 < 0, and − 1 < δ2 < 0

λ1 − 1

τ1 − 1− δ1
>

ω2 − 1

τ2 − 1− δ2

(13)

The condition for stability of the chaotic attractor is also

determined by (12). However, if the third condition of

(13) is not satisfied, then the condition for the existence

of the chaotic attractor changes to

ω2 − 1

τ2 − 1− δ1
<

(τ1 − δ1 − λ2)

(τ1 − 1− δ1) (λ2 − τ2)
(14)

3.2.3 Case 3

The remaining ranges for the quantity τi, δi, i = 1, 2, can

be determined in some cases using the same logic as in

the above two cases, or there is no analytic condition for a

boundary crisis, and it has to be determined numerically.

3.2.4 Example

Several examples of robust chaos in 2-D piecewise smooth

systems can be found in [11–14, 40, 47]. In this overview,

we give the following example [69].

Consider the unified piecewise-smooth chaotic map-

ping that contains the Hénon [10] and the Lozi [9] sys-

tems defined by

U(x, y) =





1− 1.4fα (x) + y

0.3x



 (15)

where 0 6 α 6 1 is the bifurcation parameter and the

function fα is given by

fα (x) = α |x|+ (1− α)x2 (16)

It is easy to see that for α = 0, one has the original

Hénon map, and for α = 1, one has the original Lozi

map, and for 0 < α < 1, the unified chaotic map (15)

is chaotic with different kinds of attractors. In this case

it was shown rigorously that the unified system (15) has

robust chaotic attractors for 0.493 122 734 6 α < 1 as

shown in Fig. 1. Some corresponding robust chaotic

attractors are shown in Fig. 2. These chaotic attrac-

tors cannot be destroyed by small changes in the pa-

rameters since small changes in the parameters can only

cause small changes in the Lyapunov exponents. Hence

the range for the parameter 0 6 α < 1, in which the

map (15) converges to a robust chaotic attractor, is ap-

proximately 50.688 percent. This result was also verified

numerically by computing Lyapunov exponents and bi-

furcation diagrams as shown in Fig. 1(a) and (b). For

α < 0.493 122 734, the chaos is not robust in some ranges

of the variable α because there are numerous small peri-

odic windows as shown in Fig. 3(b) such as the period-8

window at α = 0.025. Also, for α = 0.114, there are

some periodic windows. We note also the existence of

some regions in α where the largest Lyapunov exponent

is positive, but this does not guarantee the unicity of the

attractor, contrary to the case of α ∈ [0.493 122 734, 1]

where the attractor is guaranteed to be unique due to

the analytical expressions.

1

LE5

−2
0 1

α

(a)

1.5

x

−1.5
0

α
1

(b)

Fig. 1 (a) Variation of the Lyapunov exponents of the unified
map (15) for 0 6 α 6 1. (b) Bifurcation diagram for the unified
chaotic map (15) for 0 6 α 6 1.
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(d)

x

f
0.2

(x)

f
0.2

(x)

T

T

Fig. 2 (a) The transition Hénon-like chaotic attractor obtained for the unified chaotic map (15) with its basin
of attraction (white) for α = 0.2. (b) Graph of the function f0.2. (c) The transition Lozi-like chaotic attractor
obtained for the unified chaotic map (15) with its basin of attraction (white) for α = 0.8. (d) Graph of the
function f0.8.

3.3 Robust chaos in non-smooth maps

An example of robust chaos in non-smooth maps occurs

with the perceptron [24], which is the simplest kind of

feedforward neural network and is calculated as

f (x) =

{

1, if ω · x + b > 0

0, else
(17)

where ω is a vector of real-valued weights, ω · x is the

dot product (which computes a weighted sum), b is the

bias, and a is a constant term that does not depend on

any input value. The value of f (x) (0 or 1) is used to

classify x as either positive or negative in the case of a

binary classification problem. The properties of the time

series generated by a perceptron with monotonic and

non-monotonic transfer functions were examined in Ref.

[71]. The results show that a perceptron with a mono-

tonic function can produce fragile chaos only, whereas a

non-monotonic function can generate robust chaos.

3.4 Robust chaos in smooth continuous-time systems

Strange attractors can be classified into three princi-

pal classes [39, 44, 52]: hyperbolic, Lorenz-type, and

quasi-attractors. The hyperbolic attractors are the limit

sets for which Smale’s “axiom A” is satisfied and are

1

LE5

−2
0.02 0.03

α

(a)

1.5

−1.5
0.02 0.03

(b)

x

α

Fig. 3 (a) Variation of the Lyapunov exponents for the unified
chaotic map (15) for 0.02 6 α 6 0.03. (b) Bifurcation diagram
for the unified chaotic map (15) for 0.02 6 α 6 0.03 showing a
period-8 attractor obtained for α = 0.025.
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structurally stable. Periodic orbits and homoclinic or-

bits are dense and are of the same saddle type, which is

to say that they have the same index (the same dimen-

sion for their stable and unstable manifolds). However,

the Lorenz-type attractors are not structurally stable, al-

though their homoclinic and heteroclinic orbits are struc-

turally stable (hyperbolic), and no stable periodic orbits

appear under small parameter variations, as for example

in the Lorenz system [17]. The quasi-attractors are the

limit sets enclosing periodic orbits of different topological

types (for example stable and saddle periodic orbits) and

structurally unstable orbits. For example, the attractors

generated by Chua’s circuit [45] associated with saddle-

focus homoclinic loops are quasi-attractors. Note that

this type is more complex than the above two attractors,

and thus are not suitable for potential applications of

chaos such as secure communications and signal mask-

ing. For further information about these types of chaotic

attractors, see Ref. [39].

3.4.1 Robust chaos in hyperbolic systems

In strange attractors of the hyperbolic type, all orbits

in phase space are of the saddle type, and the invariant

sets of trajectories approach the original one in forward

or backward time, i.e., the stable and unstable manifolds

intersect transversally. Generally, most known physical

systems do not belong to the class of systems with hy-

perbolic attractors [39]. The type of chaos in them is

characterized by chaotic trajectories and a set of stable

orbits of large periods, not observable in computations

because of extremely narrow domains of attraction.

Hyperbolic strange attractors are robust (structurally

stable) [44]. Thus, both from the point of view of funda-

mental studies and of applications, it would be interest-

ing to find physical examples of hyperbolic chaos. For ex-

ample, the Smale-Williams attractor [46] is constructed

for a three-dimensional map, and the composed equa-

tions given by






























ẋ = −2πu + (h1 + A1 cos 2πτ/N)x− 1

3
x3

u̇ = 2π (x + ε2y cos 2πτ)

ẏ = −4πv + (h2 −A2 cos 2πτ/N) y − 1

3
y3

v̇ = 4π
(

y + ε1x
2
)

(18)

are obtained by applying the so-called equations of

Kirchhoff [23], where the variables x and u are normal-

ized voltages and currents in the LC circuit of the first

self-oscillator (U1 and I1, respectively), and y and v are

normalized voltages and currents in the second oscillator

(U2 and I2). Time is normalized to the period of oscil-

lations of the first LC oscillator, and the parameters A1

and A2 determine the amplitude of the slow modulation

of the parameter responsible for the Andronov-Hopf bi-

furcation in both self-oscillators. The parameters h1 and

h2 determine a map of the mean value of this param-

eter from the bifurcation threshold, and ε1 and ε2 are

coupling parameters.

The system (18) has been constructed as a laboratory

device [46], and an experimental and numerical solution

were found. This example of a physical system with hy-

perbolic chaotic attractor is of considerable significance

since it opens the possibility for real applications. For

further details, see Ref. [46].

3.4.2 Robust chaos in the Lorenz-type system

As a Lorenz-type system, consider the original Lorenz

system [17] given by










ẋ = σ (y − x)

ẏ = rx − y − xz

ż = −bz + xy

(19)

These equations have proved to be very resistant to

rigorous analysis and also present obstacles to numer-

ical study. A very successful approach was taken in

[27, 72] where they constructed so-called geometric mod-

els (these models are flows in three dimensions) for the

behavior observed by Lorenz for which one can rigor-

ously prove the existence of a robust attractor. Another

approach through rigorous numerics [28, 73–75] showed

that the equations exhibit a suspended Smale horseshoe.

In particular, they have infinitely many closed solutions.

A computer-assisted proof of chaos for the Lorenz equa-

tions is given in [18–20, 25, 29, 35].

In Ref. [18], a rigorous proof was provided that the ge-

ometric model does indeed give an accurate description

of the dynamics of the Lorenz equations, i.e., it supports

a strange attractor as conjectured by Lorenz in 1963.

This conjecture was listed by Steven Smale as one of

several challenging mathematical problems for the 21st

century [34]. Also, a proof that the attractor is robust,

i.e., it persists under small perturbations of the coeffi-

cients in the underlying differential equations was given.

This proof is based on a combination of normal form

theory and rigorous numerical computations. The ro-

bust chaotic Lorenz attractor is shown in Fig. 4. As

a general result, it was proved in Ref. [38] that the

so-called singular-hyperbolic (or Lorenz-like) attractor

of a 3-D flow is chaotic in two different strong senses:

First, the flow is expansive: if two points remain close

for all times, possibly with time reparametrization, then
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their orbits coincide. Second, there exists a physical (or

Sinai-Ruelle-Bowen) measure supported on the attrac-

tor whose ergodic basin covers a full Lebesgue (volume)

measure subset of the topological basin of attraction. In

particular, these results show that both the flow defined

by the Lorenz equations and the geometric Lorenz flows

are expansive.

Fig. 4 The robust Lorenz chaotic attractor obtained from (19)

for σ = 10, r = 28, b =
8

3
[17].

Another proof of the robustness of the Lorenz attrac-

tor is given in Ref. [20] where the chaotic attractors of

the Lorenz system associated with r = 28 and r = 60

were characterized in terms of their unstable periodic

orbits and eigenvalues. While the Hausdorff dimension

is approximated with very good accuracy in both cases,

the topological entropy was computed in an exact sense

only for r = 28. A general method for proving the ro-

bustness of chaos in a set of systems called C1-robust

transitive sets with singularities for flows on closed 3-

manifolds is given in Ref. [22]. The elements of the

set C1 are partially hyperbolic with a volume-expanding

central direction and are either attractors or repellers. In

particular, any C1-robust attractor with singularities for

flows on closed 3-manifolds always have an invariant foli-

ation whose leaves are forward contracted by the flow and

has a positive Lyapunov exponent at every orbit, show-

ing that any C1-robust attractor resembles a geometric

Lorenz attractor. A new topological invariant (Lorenz-

manuscript) leading to the existence of an uncountable

set of topologically various attractors is proposed in Ref.

[57] where a new definition of the hyperbolic properties

of the Lorenz system close to singular hyperbolicity is in-

troduced, as well as a proof that small non-autonomous

perturbations do not lead to the appearance of stable

solutions.

Other than the Lorenz attractor, there are some works

that focus on the proof of the robustness of chaos in 3-D

continuous systems, for example the set C1 introduced

in Ref. [22], and a characterization of maximal transi-

tive sets with singularities for generic C1-vector fields on

closed 3-manifolds in terms of homoclinic classes asso-

ciated with a unique singularity is given and applied to

some special cases.

3.4.3 No robust chaos in quasi-attractor-type systems

The complexity of quasi-attractors is essentially due to

the existence of structurally unstable homoclinic orbits

in the system itself, and in any system close to it. It

results in a sensitivity of the attractor structure to small

variations of the parameters of the generating dynamical

equation, i.e., quasi-attractors are structurally unstable.

Then this type of system cannot generate robust chaotic

attractors in the sense of this paper [44]. Attractors gen-

erated by Chua’s circuits [45], given by











ẋ = α (y − h (x))

ẏ = x− y + z

ż = −βy

(20)

where

h(x) = m1x + 1
2 (m0 −m1) (|x + 1| − |x− 1|) (21)

are associated with saddle-focus homoclinic loops and are

quasi-attractors. The corresponding non-robust double-

scroll attractor is shown in Fig. 5.

Fig. 5 The non-robust double-scroll attractor obtained from sys-

tem (20) with α = 9.35, β = 14.79, m0 = −
1

7
, m1 =

2

7
[45].

In this paper we discuss the robustness of chaos in the

sense that there are no coexisting attractors and no pe-

riodic windows in some neighborhood of the parameter

space. As we saw, robust chaos occurs in several types

of dynamical systems: discrete, continuous-time, au-

tonomous, non-autonomous, smooth, and non-smooth,
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with different topological dimensions, and it has been

confirmed either analytically, numerically, or experimen-

tally, or a combination of them. On the other hand,

there is no robust chaos in the quasi-attractor type be-

cause they are structurally unstable.

There are several methods for proving the robustness

of chaos in dynamical systems. Some of these methods

are collected and summarized in the following:

4.1 Normal form analysis

This method was used essentially (with other techniques)

for both 2-D piecewise smooth maps [11, 13, 47, 69, 77]

and 3-D continuous-time systems [18]. In both cases,

the robustness was proved analytically and confirmed nu-

merically, and in some cases the results were confirmed

experimentally.

4.2 Unimodality

Unimodality is an analytic property defined for real func-

tions. This method was used for proving the robustness

of chaos in smooth 1-D maps [1–5] with the investigation

of their invariant distributions and Lyapunov exponents.

This idea came from the analysis of the well-known lo-

gistic map.

4.3 Metric entropy

Metric entropy [67] measures the average rate of infor-

mation loss for a discrete measurable dynamical system.

This method was used to prove the robustness of chaos

in a one-dimensional map [6] using Kolmogorov-Sinai en-

tropy, and in Ref. [20] the topological entropy was com-

puted in an exact sense for r = 28. Other examples can

be found in Refs. [53, 54, 70].

4.4 Construction using basis of the robustness or the

nonrobustness

If a system is known that has robust chaos, then it is

possible to construct another model that has also robust

chaos. This method was applied to a hyperbolic-type

system [46]. Another example of this method was used to

conclude that there is no robust chaos in quasi-attractor-

type systems [44, 45].

4.5 Geometric methods

Geometric methods were used to prove the robustness of

chaos in the Lorenz system [18, 19, 22, 25–29, 36, 38, 57,

72–75]. These methods employed the so-called geometric

model, and a computer-assisted proof was used leading

to a rigorous numerical study. Generally, these methods

are the most useful for proving chaos or robust chaos in

dynamical systems.

4.6 Detecting unstable periodic solutions

This method was used both for discrete and continuous-

time systems [20, 43, 49, 72].

4.7 Ergodic theory

Ergodic theory [67] was used to prove the existence of

robust chaos in several types of dynamical systems, for

example in Ref. [21].

4.8 Weight-space exploration

The method of weight-space exploration is essentially

based on two concepts. The first is the concept of

running, which is defined as a mapping from the high-

dimensional space of the neural network structure (de-

fined by the interconnection weights, the initial con-

ditions, and the nonlinear activation function) to one

or two scalar values (called dynamic descriptors) giving

the essential information about the dynamic behavior of

the network as obtained by running it on a manageable

enough large time period. The second concept is called

descriptor map. This method was used to search for ro-

bust chaos in a discrete CNN such as the example given

in Ref. [68].

4.9 Numerical methods

Other than the types of systems mentioned in the above

gallery, the regions of parameters space for multiple at-

tractors (regions of fragile chaos), were determined using

a relatively large number N of different random initial

conditions and looking for cases where the distribution

of the average value of the state variable on the attractor

is bimodal. Since there is no rigorous test for bimodal-

ity, this was done by sorting the N values of the state

variable and then dividing them into two equal groups.

The group with the smallest range of the state variable

was assumed to represent one of the attractors, and a

second attractor was assumed to exist if the largest gap

in the values of those in the other group was twice the

range of the first group. This method allowed us to see

regions of robust chaos (without multiple attractors) as

shown in Ref. [68] and in Fig. 6.

4.10 Combination of several methods

In most examples of systems that have robust chaos, it
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is easy to see that the proof is a combination of several

methods.

2

b

−2
−1 a 4

Multiple attractors

Fig. 6 The regions of ab-space for multiple attractors for the map
given in Ref. [68].

An overview on some issues of common concern related

to the robustness of chaos in dynamical systems with sev-

eral examples in the real world were given and discussed

in this paper.
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Systems, submitted

70. O. Alvarez-Llamoza, M. G. Cosenza, and G. A. Ponce,

Chaos, Solitons & Fractals, 2008, 36(1): 150

71. A. Priel and I. Kanter, Europhys. Lett., 2000, 51(2): 230

72. V. S. Afraimovich, V. V. Bykov, and L. P. Shil′nikov, Trans.

Moscow Math. Soc., 1982, 44: 153

73. B. Hassard, J. Zhang, S. P. Hastings, and W. C. Troy, Appl.

Math. Lett., 1994, 7: 79

74. K. Mischaikow and M. Mrozek, Bull. Amer. Math. Soc.,

1995, 32(1): 66

75. K. Mischaikow and M. Mrozek, Math. Comp., 1998, 67

(223): 1023

76. Y. Chen and Y. Liu, Up-embeddability of a Graph by Order

and Girth, Graphs and Combinatorics, 2007, 23(5): 521

77. S. Banerjee, D. Kastha, S. Das, G. Vivek, and C. Grebogi,

Robust Chaos—the Theoretical Formulation and Experi-

mental Evidence, ISCAS, 1999, 5: 293

78. V. Vijayaraghavan and L. Leung Henry, A Robust Chaos

Radar for Collision Detection and Vehicular Ranging in In-

telligent Transportation Systems, ITSC, 2004: 548

79. S. Shanmugam and H. Leung, A Robust Chaotic Spread

Spectrum Inter-vehicle Communication Scheme for ITS,

IEEE International Conference on Intelligent Transporta-

tion Systems, Shanghai, China, Oct. 2003: 1540

80. M. P. Dafilis, D. T. J. Liley, and P. J. Cadusch, Chaos, 2001,

11(3): 474


