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Some Criteria for Chaos and no Chaosin the Quadratic
Map of the Plane

Zeraoulia Elhadj and Julien Clinton Sprott

Abstract: This paper gives some criteria for the existence and theaxistence of
chaotic attractors in the general 2-D quadratic map.
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1 Introduction
THE MOSTgeneral 2-D quadratic map is given by

Fxy) = [BoTaX T8y + e +ay” +asxy] _ [Za(xY) )
’ bo + biX+ by + bsx? + bay? + bsxy Zo(X,Y)

where(aj, bj)o<i<s € R12 are the bifurcation parameters. Some special cases of the
map (1) can be used in potential applications in severa¢wdifft ways and types
of studies [1-5]. Some important results about the dynanpicaperties, bifurca-
tions, and stability of some special cases of the 2-D mapré paen in [6-13].
However, there are a few papers that focus on the generalofabes map. For
example, in [14] some solutions of low-dimensional, lovder polynomial maps
were classified numerically as either fixed point, limit ®ahaotic, or unstable us-
ing Lyapunov exponent calculations, with the result thadva percent are chaotic.
For the 2-D quadratic maps, this percentage is aboutQt1 0.36% Furthermore,
in [15] the correlation dimension was calculated for thastye attractors obtained
numerically for some cases of the map (1), and it was founttheaaverage cor-
relation dimension scales approximately as the squareofdbe dimension of the
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system with a small variation. In [14—17] a systematic dedéoc chaotic orbits of
the general 2-D quadratic map (1) with randomly chosen aoeffis was described
using a simple computer program that gives different ditrac Some simple spe-
cial cases of the general 2-D quadratic map (1) were studidétiail in [6,18-22],
with analytical results in [6,18,19]. In [12] the humber afgsible chaotic attrac-
tors for the map (1) was reduced to 30 types, and the existeingebounded and
bounded orbits was investigated analytically with anabjtipredictions of some
system orbits. Furthermore, a classification of the possibhotic orbits was given
according to the number of nonlinearities, showing how tluce all the dynamics
of the general case (1) to a finite number of maps with well kmésymulas. On
the other hand, in [13] a rigorous proof of the hyperchattiof the general map
(1) is given using the so-callexbcond-derivative teskefined for real functions.

This paper offers a similar rigorous proof for the chaoyicénd the non-
chaoticity of the general map (1) using the so-called sedmative test defined
for real functions. Indeed, the notions of critical pointelahe second-derivative
test are well defined for functions of two variables. Theicait points of function
f(x,y) are solutions of the equatior@% =0 and%’ = 0, which must be
solved simultaneously. L€k, Y.)) be a critical point, and define

0°f 0°f 0°f 2

We have the following cases: ¢ (x.,Yc) > 0 and ‘?Z;E:Z"V) (X, Ye) < O, thenf(x,y)

has a relative maximum akc,Yc). If df(xc,yc) >0 and%‘ﬂ(xc,yc) > 0, then

f(x,y) has arelative minimum &k, ). If d (X, Yc) < O, thenf(x,y) has a saddle
point at(xc,Yc). If df (X, Ye) = O, then the second-derivative test is inconclusive.
The Jacobian matrix of the map (1) is given by

Ixy) = X+ 233X+ asy Y+ 2a4y+ asX 3)
770 byx+ 2bgx+bsy by + 2bsy + bsx

For the map (1) assume that

[ a3>0, as>0, d4aga >a’
Ql'{ bs <0, by<0, 4bghy > b2, @

where Q; defines a subset of the elemertts,bi)o<i<s € R12, If the second-
derivative test for botlz,(x,y) andz,(X,y) is used separately, then one has for alll
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(x,y) € R? that

a0aZ — &35 — 43033y + 834 + 53 _

o= o — decas R
2 2 2
Z(Xy) < bobg — blbzbst?%‘ibo‘lzzzi+ bibs +b5bs Lo,
i.e., for all iterations(x,y) € R? of the map (1), one has
X > Lgandy < L. (6)

It is shown in [23] that a systemk1 = g(X), Xk € Q C R", such that the derivative
g (x) of the functiong(x) satisfies the following inequality

19 = 1) = 1/ Amax(ITI) <N < +oo, (7)

with a smallest eigenvalue df J that satisfies

Amin(d73)) > 6 > 0, (8)

whereN?2 > 0, then, for anyxg € Q, all the Lyapunov exponents g4 are located
inside 3¢, InN]. That is,

?gli(xo))glnN,i:l,Z,...,n, 9)

wherelj(xp)) are the Lyapunov exponents for the n@ap

In [13] we use inequalities (7) and (8) with= 1 andN > 1 to give sufficient
conditions for the existence of hyperchaotic attractorhégeneral 2-D quadratic
map (1) in terms of the parametei®, b;))o<i<s € R In this paper we use only
the inequality (7) and search for some réhkuch that O< N < 1 for which the
map (1) has no chaotic attractors. This result permits uséotiie notion of com-
pliment defined for ensembles to determine rigorously glimes of the parameters
(&,bi))o<i<s € RR1? for the occurrence of chaos in the quadratic map of the plane
(2).

For the map (1) one has

T, [J11 Ji2
V= [312 Joo (10)

whereJ;» = J»1 becausd'J is symmetric and
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Ji1 =[(a1 + 2a3)x+ asy)]* + [(by + 2bg)x+ bsy]?

Ji2 =[(au + 2a3)x+ asy|[asx+ (a2 + 2a4)Y]
+[(b1 + 2bg)x + bsy) (bsx + (b2 + 24)y]

oz =[asX+ (82 + 284)y]” + [bsX + (b2 + 2b4)y)]%.

(11)

Becausel'J is at least a positive semi-definite matrix, then all its eigdue are
real and positive, i.eAmax(J7J)) > Amin(J7J)) > 0. Hence the eigenvalues 8f J
are given by

J1+ o2+ \/ 32, — 201dp0 + A2, + 33,

Amax(J"J)) 3
(12)
. J1+Jo2— \/ J2 — 2011000+ 432, + 32,

We have

Ji1= C]_X2 + C2y2 + C3xy

1

Jio= §C3X2 + C4y2 +CsXxy (13)

Jo2 = Cpx% 4 Cey? + 2Caxy
where

C1=(2a3+a1)* + (2b3+b1)* >0

Co=a+b5>0

Cs = 2[(ag + 2ag)as + (by + 2bg)bs)

Cs = (a2 +2a4)as + (by + 2bs)bs

Cs = (a1 + 2a3)(az + 2a4) + (b1 + 203) (b2 + 2bs) + a€ + b2
Cs = (2as+az)? + (2bg + by)? > 0.

(14)

The 2-D quadratic map (1) is non-chaotic if there exist akeghtisfying inequality
(7) such that

O<N<1
&%+ &y + Exy—2N <0
Eax + &5yt + ECy + ErxyP + Epxy?
— N2&1x% — N2&y? — N2&gxy+ 1+N* > 0,

(15)
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where
&6=Ci+C>>0 gSZCA%_CZCG

&=C+C>0 &6 = C3Cs5 — CoC3 — 2C1Cy (16)
$3=C3+2C4 &7 =2C4C5 —C3C — 2CC4
1
§=C5-CiC,  &=CE-CiC—CiCu—Ch.
Assume first that
Qz . 63 < 0. (17)

The aim of the following investigation is to determine areinl for the quan-
tity O < N < 1 such that (7) holds for akk > Ly andy < L. For this purpose,
begin with the second condition of (15) and consider the tianc m(x,y) =
E1x2 4 &% + E3xy— 2N, assuming that

Qsz:a3 <0. (18)

Then from (4) and (5) one has

_a Ay’ ay &y Lla a

a1 a1 a ag a a
Thus we can choose
2 2
asgX asX a L
x<la<x< - &Y &Y B e P, (o)

a ap a a a a

wherex; andx; are the roots of the equation(x,y) = 0 with respect to, i.e., its
discriminant is 81&; + (63? —4&,&,)y? > 0 forally € R. Then one has

&y \[NG (- 468)Y

X1 =
1 261 (21)
—&ay+ \/BNEL + (83— 4E18)y2
Xo = .
2
The inequalityx; < L, holds for ally < Ly, if
Qq:lp< —2ika (22)
&3

and the inequality

_aX ay? Ay ay L. &
a1 a1 a a a a
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holds for ally < Ly, if
W]_(X, y) +W2(X7 y) + 621 <0

where
Wi (x,y) = EX* + E10y* + E103Y? + E1CY + E1axy® + E1ay®
W2(X,Y) = E19CY + E16XY + E17XC + E1gy” + E1oxY + Eaoy
and
4a2 2
do= ;fl
q
s
l pr—
A
£ = 4(2azas + a%) 512
1= 2
1
8agasé?
612 - 2
a
£ _ Bajasé?
13 — 2
a
£iu— —4(a1é3— 2axéy)asés
14= =2
1
£ie— —4(a1é3— 2axé1)azéy
1
Elo— —4(a1é3—2axé1)asé;
1
517 _ _8(|—a - aO)a3512
aj
g — —M@13285 — 280281 + 28481l a aflp—adé)éy
aj
E1— —8(La— ap)asé?
19= 2
q
£ _ 4(La—ag)(arés —2aé1)&1
20=

aj
_ 4886 —2N& —2a0&iLa+ E1LD)E
EY '

éo1

(23)

(24)

(25)
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Now consider the functiow(x,y) = wi(X,y) + Wa(X,y) + &21. The critical
points ofw are the solutions of the system

4EoX® + 3E10yX + (28174 2815y + 2yPE11)X+ E13y° + Ex6yP + E1oy = O
A&10y° + (3814 + 3E13X)Y? + (2818 + 216X+ 2811X°)y (26)
+ &1 + &1 + E1ox+ Ex = 0.

Assume that
Qs5:89#0, §10#0. (27)
Then both equations in (26) are cubic, and the first equaﬂit@ﬁﬁ) has at least
one real solutlorsé ) for all values ofy, and at most three roo(sC )1<i<3 for all
values ofy. The second equation of (26) has at least one real solqﬂt%rior all
values ofx, and at most three roo($1C )1<i<3 for all values ofx. Thus there are

still solutlons(sé),qc ) of equation (26) that are critical points of the functibn
On the other hand, one has

20
3)(2 (X,Y) = 128X + 2&11Y” + 615Xy + 2815y + 2817 (28)
dW( >y) = dl(X7 y) + d2(X7 y)
where
di(x,Y) = ExoX* + Eagy* + E2ax®YP + EouxCy + EexyP + E7y> + EagXCy (29)
da(X,Y) = EoXy? + &0y + €31 + EaoyP + Eaaxy+ Eaax + Easy + E36
and
&o0 =2489€11 &26 =12811813+ 72810é12
é23 =24810¢11 é27 =24810815+ 12811814 (30)
04 =144898 10+ 36810813+ 482 E28 =12816&10+ 41115+ 7289814
éo5 =T7289é13+ 12811812 é29 =4816€11+ 3612814+ 12813815
and
Ea0 24810815 + 12811512 €33 =12817813+ 12818812+ 416615
—48&11¢13
=2 4 — 1682
&31 =2489é13+ 4617811 — 1661, Eas —AE1cE17— 16816611 (31)

&30 =24817810+ 4818811+ 12814815

5 &35 =12817¢814— 24¢16813+ 4618815
— 3613

&3 =4&17818 — A€ 55+ 24E1660.
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If one root(sél),qél)) exists for equation (26), then assume t%%ﬁ(sgl),qél)) <0
anddw(sgl),q((;l)) >0,i.e.,
Qs 1289(s7)2 4 2811(q5)2 + 681257 o + 281508" + 2817 < 0 (32)
dy(st”, o) + da(st” o) > 0.

Hence the functionw has a relative maximum e(lsél),qf;l)), e, wixy <

w(sél),qél)) for all (x,y) € R?, and in this case we choowsél),qél)) <0, i.e.,

wi (s, g + wa(s o) + £, < 0 (33)
or
(1) A1) (1) (D152 2 2 2
Q,: W& 6 ) twa(s ,qgf]zli+(4ao+4La Baola)li N <N (34)
1

because only the coefficieft; depends oM.

If equation (26) has more than one root, then one calcul%i&ssg),qg)),
dw(sg),q((;i)), andw(sf;i),q((;i)) and determines the type of each point by imposing
some conditions as above, and according to the valuea(sgf),qg)), one can
determine the global maximum of the functibnand finally make the quantity
w(s((;i) , q((;i)) strictly negative.

For the third condition of (15), consider the functiex,y) = vi(X,y) +Va(X,y),
where

Vi(X,Y) = EaxX* + Esy* + &y + E7xy® + EaxPy? + 1 (35)
V2(%,y) = N?[N? — (& + &Y + Eaxy)]
The critical points of the functiom are the solutions of the system

4500 + (36)C + (260f — NPEXH BNy =0 o
465)/3 + (3E7x)y2 + (258X2 — 2N262)y+ ngS — NZE3X =0.

With the same analysis as above, there are still solutﬂkﬁjfsléi)) of equation (36)
that are critical points for the function On the other hand, one has

d?v
e (X,Yy) = 1284%% + 2&gy? + 6Esxy — 2N2&; 37)
dV(X7 y) = pl(x7 y) + pZ(X7 y)7

where

PL(xY) = &5+ Eooy* + EsaCY+ Enaxy’ + Eoply? (38)
P2(X,y) = N2hy (x,y) + ha(x,y) + 4E1 €N,
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and

hi(X,y) = 12(&2&6 — E1&7)XY — A(68284 + E1&5)X% — A(6E1E5 + E285)Y? (39)
ho(X,y) = —(16E5x2 4 36E2y2 + 48E7&gXY),

and

&41= 144485+ 368687 + 4E4

&1 = —1685 — AN?(6,84+ &1 &)

Ea3 = —3687 — AN?(68185+ &285) (40)
Eaa = 12N?(&x86 — £1&7) — 48785
&a5=AN*E1&,.

If one root(kél) I((;l)) exists for equation (36), then assume tgfg(kél),lél)) >
Oandd\,(kc )) > 0,i.e.,

37 = 248483
38 = 24¢5¢s
€39 = 7284¢7+ 12863
a0 = 128785+ 726586

N o122 4 285(187)% + 68keTIE)
Qp:q 26, =M (41)

488N+ hy (K 1D INZ + [ (KD 1) + ho (kY 1E9)] > 0.

The first condition of (41) is possible if

Qg : 1284(k")? + 285(18Y)2 + 66k 1Y > 0, (42)

and the second condition of (41) is possible forNak R if

Q101 P(KEY 1) — 16y (k1Y) E180 — 180 (1Y) 818, <0 (43)
becaus€1&, > 0, and from the first condition of (15), and conditions (34) a#l)(
one has thalyj,i = 1,2 must satisfy the inequalities

max(0,N1) < N <min(1,Ny). (44)
We have the following cases:

(@ IfN;<O0andN,>1,i.e.,

{ Qa1 : wa (s, o) + wao(st ot )]a2 + (483 + AL2 — BagLa)E2 < O

+ (
Qi1 1284(KY)2 4 285(17)2 + 686KV 1Y — 28, > 0,
(45)
then one has @ N < 1.
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(b) IfN;<0andN, <1, i.e.,

Qu: [w <“,qé>>+wZ< < ac))a? + (405 1413~ Baola)£F < 0
Q12 128,(kEY )2+ 285(187)% + 66k 1LY — 28 <0
_ (46)
whereQj, is the compliment of the subs@;,, then there exists aN such
that 0< N < Np < 1.

(c) fNp>0andN; >1,i.e.,

Qua: fwa(s”, o) +wa(st” ot))ad + (483 + 4L2 — BagLa)E2 > 0
Quz: 1285(KEY)2 + 285(187)2 + 68k 1Y — 281 > 0,
(47)
then there exists aN such that 6< N; < N < 1, with the conditionN; < 1,
i.e.,

(1)

Q14 (Wa(stY,0Y) +wa(st?), qt)) — 8&1)a2 + (483 + 4L2 — BagLa)EZ < O.

(48)
(d) IfNp >0andN, <1, i.e.,

Qus 1280 (Ke )2+ 2l )* 683k e ~201 <0y

Qi 1284(kY)2 4 285(1E7)2 + BEKEVIEY — 28, < 0,

then one has & N; < N < N, < 1, with the conditionN; < Ny, i.e.,
oWt Wg)ag + (48§ +4L3 — 8agla) &7
16 - 851&%
(1) ©) (DD (50)
1284(ke )2 +2&g(1c)2 + 6&6ke I
< 2¢y

wherew; + Wy = (Wy + Ws) (sél) , q((;l) ).

Therefore, for all the above cases there existSlanch that 6< N < 1 in which
inequality (15) holds for alk > L, andy < Ly,

Finally, the general map (1) has no chaotic attractors thallabove inequalities
hold. Hence we have proved the following theorem:

Theorem 1 If N{=320; # 0, or NIZ1'QiN Q12 # 0, or NI=14,;1Q1 # 0, or Ni=3°0; N

Q12N Q15N Q16 # (0, then the general quadratic map of the plane given by equation
(1) has no chaotic attractorsx,y) with the condition x> L, and y< Ly, where Ly

and Ly, are given by (5).
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An immediate and fundamental result of the Theorem 1 is ginen

Theorem 2 If (&,b)o<i<s € UIZ12Q;, or (a,bi)o<ics € UZHQ U Qp, or

(&,bi)o<i<s5 € Ugifil;éllgi’ or (&,bi)o<i<s € UE%OQi U Q12U Q15U Q16, then the
general quadratic map of the plane given by equation (1) hassible (or other
types of solutions, especially, unbounded orbits) chaattiactors (x,y) with the
condition x> L, and y< Ly, where L and L, are given by (5).

We conclude with the following remarks:

(&) The above inequalities do not guarantee the boundedh&ss attractors.

(b) Not all chaotic or non-chaotic attractors are obtainednfthe above condi-
tions.

(c) Finding a specific example is not simple because at eagpttisé solution of
third-degree equations and very complicated inequalitigs 12 unknown
variables are required.

(d) It may be possible to convert the proof to a numerical aiigm.

(e) Some of the above chaotic or non-chaotic attractors ednfimitely or very
large.

At the end of this paper, let us anounce the following opemlgims:

1. Find sufficient conditions (in the same direction of théger) that guarantee
the boundedness of the attractors.

2. Find a specific example where the conditions of TheoremZ2ltwids.
3. Convert the proof to a numerical algorithm.

2 Conclusion

We have given a rigorous proof of the existence and none@xist of chaos in the
general quadratic map of the plane. The proof shows how ttdogpecific types
of orbits in some cases.
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