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Some Criteria for Chaos and no Chaos in the Quadratic
Map of the Plane

Zeraoulia Elhadj and Julien Clinton Sprott

Abstract: This paper gives some criteria for the existence and the non-existence of
chaotic attractors in the general 2-D quadratic map.
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1 Introduction

THE MOST general 2-D quadratic map is given by

f (x,y) =

[

a0 +a1x+a2y+a3x2 +a4y2 +a5xy
b0 +b1x+b2y+b3x2 +b4y2 +b5xy

]

=

[

za(x,y)
zb(x,y)

]

(1)

where(ai ,bi)0≤i≤5 ∈ R
12 are the bifurcation parameters. Some special cases of the

map (1) can be used in potential applications in several different ways and types
of studies [1–5]. Some important results about the dynamical properties, bifurca-
tions, and stability of some special cases of the 2-D map (1) are given in [6–13].
However, there are a few papers that focus on the general caseof this map. For
example, in [14] some solutions of low-dimensional, low-order polynomial maps
were classified numerically as either fixed point, limit cycle, chaotic, or unstable us-
ing Lyapunov exponent calculations, with the result that a few percent are chaotic.
For the 2-D quadratic maps, this percentage is about 11.10±0.36%. Furthermore,
in [15] the correlation dimension was calculated for the strange attractors obtained
numerically for some cases of the map (1), and it was found that the average cor-
relation dimension scales approximately as the square rootof the dimension of the
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system with a small variation. In [14–17] a systematic search for chaotic orbits of
the general 2-D quadratic map (1) with randomly chosen coefficients was described
using a simple computer program that gives different attractors. Some simple spe-
cial cases of the general 2-D quadratic map (1) were studied in detail in [6,18–22],
with analytical results in [6, 18, 19]. In [12] the number of possible chaotic attrac-
tors for the map (1) was reduced to 30 types, and the existenceof unbounded and
bounded orbits was investigated analytically with analytical predictions of some
system orbits. Furthermore, a classification of the possible chaotic orbits was given
according to the number of nonlinearities, showing how to reduce all the dynamics
of the general case (1) to a finite number of maps with well known formulas. On
the other hand, in [13] a rigorous proof of the hyperchaoticity of the general map
(1) is given using the so-calledsecond-derivative testdefined for real functions.

This paper offers a similar rigorous proof for the chaoticity and the non-
chaoticity of the general map (1) using the so-called second-derivative test defined
for real functions. Indeed, the notions of critical points and the second-derivative
test are well defined for functions of two variables. The critical points of function
f (x,y) are solutions of the equations∂ f (x,y)

∂x = 0 and ∂ f (x,y
∂y = 0, which must be

solved simultaneously. Let(xc,yc)) be a critical point, and define

df (xc,yc) =
∂ 2 f (x,y)

∂x2 (xc,yc)
∂ 2 f (x,y)

∂y2 (xc,yc)−
[∂ 2 f (x,y)

∂x∂y
(xc,yc)

]2
. (2)

We have the following cases: Ifdf (xc,yc) > 0 and ∂ 2 f (x,y)
∂x2 (xc,yc) < 0, then f (x,y)

has a relative maximum at(xc,yc). If df (xc,yc) > 0 and ∂ 2 f (x,y)
∂x2 (xc,yc) > 0, then

f (x,y) has a relative minimum at(xc,yc). If df (xc,yc) < 0, thenf (x,y) has a saddle
point at(xc,yc). If df (xc,yc) = 0, then the second-derivative test is inconclusive.

The Jacobian matrix of the map (1) is given by

J(x,y) =

[

a1x+2a3x+a5y a2y+2a4y+a5x
b1x+2b3x+b5y b2y+2b4y+b5x

]

(3)

For the map (1) assume that

Ω1 :

{

a3 > 0, a4 > 0, 4a3a4 > a2
5

b3 < 0, b4 < 0, 4b3b4 > b2
5,

(4)

where Ω1 defines a subset of the elements(ai ,bi)0≤i≤5 ∈ R
12. If the second-

derivative test for bothza(x,y) andzb(x,y) is used separately, then one has for all
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(x,y) ∈ R
2 that

za(x,y) ≥
a0a2

5−a1a2a5−4a0a3a4 +a2
1a4 +a2

2a3

a2
5−4a3a4

= La

zb(x,y) ≤
b0b2

5−b1b2b5−4b0b3b4 +b2
1b4 +b2

2b3

b2
5−4b3b4

= Lb,

(5)

i.e., for all iterations(x,y) ∈ R
2 of the map (1), one has

x≥ La andy≤ Lb. (6)

It is shown in [23] that a systemxk+1 = g(xk), xk ∈ Ω ⊂ R
n, such that the derivative

g′(x) of the functiong(x) satisfies the following inequality

‖g′(x)‖ = ‖J)‖ =
√

λmax(JTJ) ≤ N < +∞, (7)

with a smallest eigenvalue ofJTJ that satisfies

λmin(J
TJ)) ≥ θ > 0, (8)

whereN2 ≥ θ , then, for anyx0 ∈ Ω, all the Lyapunov exponents atx0 are located
inside

[ lnθ
2 , lnN

]

. That is,

lnθ
2

≤ l i(x0)) ≤ lnN, i = 1,2, ...,n, (9)

wherel i(x0)) are the Lyapunov exponents for the mapg.
In [13] we use inequalities (7) and (8) withθ = 1 andN > 1 to give sufficient

conditions for the existence of hyperchaotic attractors inthe general 2-D quadratic
map (1) in terms of the parameters(ai ,bi))0≤i≤5 ∈ R

12. In this paper we use only
the inequality (7) and search for some realN such that 0< N ≤ 1 for which the
map (1) has no chaotic attractors. This result permits us to use the notion of com-
pliment defined for ensembles to determine rigorously all regions of the parameters
(ai ,bi))0≤i≤5 ∈ R

12 for the occurrence of chaos in the quadratic map of the plane
(1).

For the map (1) one has

JTJ =

[

J11 J12

J12 J22

]

(10)

whereJ12 = J21 becauseJTJ is symmetric and
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J11 =[(a1 +2a3)x+a5y)]2 +[(b1 +2b3)x+b5y]2

J12 =[(a1 +2a3)x+a5y][a5x+(a2 +2a4)y]

+ [(b1 +2b3)x+b5y)(b5x+(b2 +2b4)y]

J22 =[a5x+(a2 +2a4)y]
2 +[b5x+(b2 +2b4)y)]

2
.

(11)

BecauseJTJ is at least a positive semi-definite matrix, then all its eigenvalue are
real and positive, i.e.,λmax(JTJ)) ≥ λmin(JTJ)) ≥ 0. Hence the eigenvalues ofJTJ
are given by

λmax(J
TJ)) =

J11+J22+
√

J2
11−2J11J22+4J2

12+J2
22

2

λmin(J
TJ)) =

J11+J22−
√

J2
11−2J11J22+4J2

12+J2
22

2
.

(12)

We have
J11 = C1x2 +C2y2 +C3xy

J12 =
1
2

C3x2 +C4y
2 +C5xy

J22 = C2x2 +C6y2 +2C4xy

(13)

where
C1 = (2a3 +a1)

2 +(2b3 +b1)
2 ≥ 0

C2 = a2
5 +b2

5 ≥ 0

C3 = 2[(a1 +2a3)a5 +(b1 +2b3)b5]

C4 = (a2 +2a4)a5 +(b2 +2b4)b5

C5 = (a1 +2a3)(a2 +2a4)+ (b1 +2b3)(b2 +2b4)+a2
5 +b2

5

C6 = (2a4 +a2)2 +(2b4 +b2)
2 ≥ 0.

(14)

The 2-D quadratic map (1) is non-chaotic if there exist a realN satisfying inequality
(7) such that

0 < N ≤ 1

ξ1x2 + ξ2y2 + ξ3xy−2N ≤ 0

ξ4x4 + ξ5y4 + ξ6x
3y+ ξ7xy3 + ξ8x

2y2

−N2ξ1x2−N2ξ2y2−N2ξ3xy+ 1+N4 ≥ 0,

(15)
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where
ξ1 = C1 +C2 ≥ 0

ξ2 = C2 +C6 ≥ 0

ξ3 = C3 +2C4

ξ4 =
1
4
C2

3 −C1C2

ξ5 = C2
4 −C2C6

ξ6 = C3C5−C2C3−2C1C4

ξ7 = 2C4C5−C3C6−2C2C4

ξ8 = C2
5 −C1C6−C3C4−C2

2.

(16)

Assume first that
Ω2 : ξ3 < 0. (17)

The aim of the following investigation is to determine an interval for the quan-
tity 0 < N ≤ 1 such that (7) holds for allx ≥ La and y ≤ Lb. For this purpose,
begin with the second condition of (15) and consider the function m(x,y) =
ξ1x2 + ξ2y2 + ξ3xy−2N, assuming that

Ω3 : a1 < 0. (18)

Then from (4) and (5) one has

La ≤ x≤−
a3x2

a1
−

a4y2

a1
−

a5xy
a1

−
a2y
a1

+
La

a1
−

a0

a1
. (19)

Thus we can choose

x1 ≤ La ≤ x≤−
a3x2

a1
−

a4y2

a1
−

a5xy
a1

−
a2y
a1

+
La

a1
−

a0

a1
≤ x2 (20)

wherex1 andx2 are the roots of the equationm(x,y) = 0 with respect tox, i.e., its
discriminant is 8Nξ1 +(ξ 2

3 −4ξ1ξ2)y2 > 0 for all y∈ R. Then one has

x1 =
−ξ3y−

√

8Nξ1+(ξ 2
3 −4ξ1ξ2)y2

2ξ1

x2 =
−ξ3y+

√

8Nξ1+(ξ 2
3 −4ξ1ξ2)y2

2ξ1
.

(21)

The inequalityx1 ≤ La holds for ally≤ Lb if

Ω4 : Lb ≤
−2ξ1La

ξ3
, (22)

and the inequality

−
a3x2

a1
−

a4y2

a1
−

a5xy
a1

−
a2y
a1

+
La

a1
−

a0

a1
≤ x2
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holds for ally≤ Lb if

w1(x,y)+w2(x,y)+ ξ21 ≤ 0 (23)

where

w1(x,y) = ξ9x4 + ξ10y
4 + ξ11x

2y2 + ξ12x
3y+ ξ13xy3 + ξ14y

3

w2(x,y) = ξ15x
2y+ ξ16xy2 + ξ17x

2 + ξ18y
2 + ξ19xy+ ξ20y

(24)

and

ξ9 =
4a2

3ξ 2
1

a2
1

ξ10 =
4a2

4ξ 2
1

a2
1

ξ11 =
4(2a3a4 +a2

5)ξ 2
1

a2
1

ξ12 =
8a3a5ξ 2

1

a2
1

ξ13 =
8a4a5ξ 2

1

a2
1

ξ14 =
−4(a1ξ3−2a2ξ1)a4ξ1

a2
1

ξ15 =
−4(a1ξ3−2a2ξ1)a3ξ1

a2
1

ξ16 =
−4(a1ξ3−2a2ξ1)a5ξ1

a2
1

ξ17 =
−8(La−a0)a3ξ 2

1

a2
1

ξ18 =
−4(a1a2ξ3−2a0a4ξ1+2a4ξ1La−a2

1ξ2−a2
2ξ1)ξ1

a2
1

ξ19 =
−8(La−a0)a5ξ 2

1

a2
1

ξ20 =
4(La−a0)(a1ξ3−2a2ξ1)ξ1

a2
1

ξ21 =
4(a2

0ξ1−2Na2
1−2a0ξ1La+ ξ1L2

a)ξ1

a2
1

.

(25)
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Now consider the functionw(x,y) = w1(x,y) + w2(x,y) + ξ21. The critical
points ofw are the solutions of the system

4ξ9x3 +3ξ12yx2 +(2ξ17+2ξ15y+2y2ξ11)x+ ξ13y
3 + ξ16y

2 + ξ19y = 0

4ξ10y
3 +(3ξ14+3ξ13x)y

2 +(2ξ18+2ξ16x+2ξ11x
2)y

+ ξ12x
3 + ξ15x

2 + ξ19x+ ξ20 = 0.

(26)

Assume that
Ω5 : ξ9 6= 0, ξ10 6= 0. (27)

Then both equations in (26) are cubic, and the first equation of (26) has at least
one real solutions(1)

c for all values ofy, and at most three roots(s(i)
c )1≤i≤3 for all

values ofy. The second equation of (26) has at least one real solutionq(1)
c for all

values ofx, and at most three roots(q(i)
c )1≤i≤3 for all values ofx. Thus there are

still solutions(s(i)
c ,q(i)

c ) of equation (26) that are critical points of the functionh.
On the other hand, one has

d2w
dx2 (x,y) = 12ξ9x2 +2ξ11y

2 +6ξ12xy+2ξ15y+2ξ17

dw(x,y) = d1(x,y)+d2(x,y)
(28)

where

d1(x,y) = ξ22x
4 + ξ23y

4 + ξ24x
2y2 + ξ25x

3y+ ξ26xy3 + ξ27y
3 + ξ28x

2y

d2(x,y) = ξ29xy2 + ξ30y
3 + ξ31x

2 + ξ32y
2 + ξ33xy+ ξ34x+ ξ35y+ ξ36

(29)

and

ξ22 =24ξ9ξ11

ξ23 =24ξ10ξ11

ξ24 =144ξ9ξ10+36ξ12ξ13+4ξ 2
11

ξ25 =72ξ9ξ13+12ξ11ξ12

ξ26 =12ξ11ξ13+72ξ10ξ12

ξ27 =24ξ10ξ15+12ξ11ξ14

ξ28 =12ξ16ξ12+4ξ11ξ15+72ξ9ξ14

ξ29 =4ξ16ξ11+36ξ12ξ14+12ξ13ξ15

(30)

and

ξ30 =24ξ10ξ15+12ξ11ξ14

ξ31 =24ξ9ξ18+4ξ17ξ11−16ξ 2
11

ξ32 =24ξ17ξ10+4ξ18ξ11+12ξ14ξ15

−36ξ 2
13

ξ33 =12ξ17ξ13+12ξ18ξ12+4ξ16ξ15

−48ξ11ξ13

ξ34 =4ξ16ξ17−16ξ16ξ11

ξ35 =12ξ17ξ14−24ξ16ξ13+4ξ18ξ15

ξ36 =4ξ17ξ18−4ξ 2
16+24ξ16ξ9.

(31)
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If one root(s(1)
c ,q(1)

c ) exists for equation (26), then assume thatd2w
dx2 (s(1)

c ,q(1)
c ) < 0

anddw(s(1)
c ,q(1)

c ) > 0, i.e.,

Ω6 :

{

12ξ9(s
(1)
c )2 +2ξ11(q

(1)
c )2 +6ξ12s

(1)
c q(1)

c +2ξ15q
(1)
c +2ξ17 < 0

d1(s
(1)
c ,q(1)

c )+d2(s
(1)
c ,q(1)

c ) > 0.
(32)

Hence the functionw has a relative maximum at(s(1)
c ,q(1)

c ), i.e., w(x,y ≤

w(s(1)
c ,q(1)

c ) for all (x,y) ∈ R
2, and in this case we choosew(s(1)

c ,q(1)
c ) < 0, i.e.,

w1(s
(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c )+ ξ21 < 0 (33)

or

Ω7 :
[w1(s

(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c ]a2
1 +(4a2

0 +4L2
a−8a0La)ξ 2

1

8ξ1a2
1

= N1 < N (34)

because only the coefficientξ21 depends onN.

If equation (26) has more than one root, then one calculatesd2w
dx2 (s(i)

c ,q(i)
c ),

dw(s(i)
c ,q(i)

c ), andw(s(i)
c ,q(i)

c ) and determines the type of each point by imposing

some conditions as above, and according to the values ofw(s(i)
c ,q(i)

c ), one can
determine the global maximum of the functionh, and finally make the quantity
w(s(i)

c ,q(i)
c ) strictly negative.

For the third condition of (15), consider the functionv(x,y) = v1(x,y)+v2(x,y),
where

v1(x,y) = ξ4x4 + ξ5y4 + ξ6x3y+ ξ7xy3 + ξ8x2y2 +1
v2(x,y) = N2[N2− (ξ1x2 + ξ2y2 + ξ3xy)]

(35)

The critical points of the functionv are the solutions of the system

4ξ4x3 +(3ξ6y)x2 +(2ξ8y2−2N2ξ1)x+ ξ7y3−N2ξ3y = 0
4ξ5y3 +(3ξ7x)y2 +(2ξ8x2−2N2ξ2)y+ ξ6x3−N2ξ3x = 0.

(36)

With the same analysis as above, there are still solutions(k(i)
c , l (i)c ) of equation (36)

that are critical points for the functionv. On the other hand, one has

d2v
dx2 (x,y) = 12ξ4x2 +2ξ8y2 +6ξ6xy−2N2ξ1

dv(x,y) = p1(x,y)+ p2(x,y),
(37)

where
p1(x,y) = ξ51x4 + ξ52y4 + ξ53x3y+ ξ54xy3 + ξ55x2y2

p2(x,y) = N2h1(x,y)+h2(x,y)+4ξ1ξ2N4,
(38)
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and

h1(x,y) = 12(ξ2ξ6−ξ1ξ7)xy−4(6ξ2ξ4 + ξ1ξ8)x2−4(6ξ1ξ5 + ξ2ξ8)y2

h2(x,y) = −(16ξ 2
8 x2 +36ξ 2

7 y2 +48ξ7ξ8xy),
(39)

and

ξ37 = 24ξ4ξ8

ξ38 = 24ξ5ξ8

ξ39 = 72ξ4ξ7 +12ξ6ξ8

ξ40 = 12ξ7ξ8 +72ξ5ξ6

ξ41 = 144ξ4ξ5 +36ξ6ξ7 +4ξ 2
8

ξ42 = −16ξ 2
8 −4N2(6ξ2ξ4+ ξ1ξ8)

ξ43 = −36ξ 2
7 −4N2(6ξ1ξ5+ ξ2ξ8)

ξ44 = 12N2(ξ2ξ6−ξ1ξ7)−48ξ7ξ8

ξ45 = 4N4ξ1ξ2.

(40)

If one root(k(1)
c , l (1)

c ) exists for equation (36), then assume thatd2v
dx2 (k

(1)
c , l (1)

c ) >

0 anddv(k
(1)
c , l (1)

c ) > 0, i.e.,

Ω8 :











N <

√

12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k

(1)
c l (1)

c

2ξ1
= N2

4ξ1ξ2N4+h1(k
(1)
c , l (1)

c )N2+[p1(k
(1)
c , l (1)

c )+h2(k
(1)
c , l (1)

c )] > 0.

(41)

The first condition of (41) is possible if

Ω9 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c > 0, (42)

and the second condition of (41) is possible for allN ∈ R if

Ω10 : h2
1(k

(1)
c , l (1)

c )−16p1(k
(1)
c , l (1)

c )ξ1ξ2−16h2(k
(1)
c , l (1)

c )ξ1ξ2 < 0 (43)

becauseξ1ξ2 > 0, and from the first condition of (15), and conditions (34) and (41)
one has thatNi, i = 1,2 must satisfy the inequalities

max(0,N1) < N < min(1,N2). (44)

We have the following cases:

(a) If N1 ≤ 0 andN2 ≥ 1, i.e.,
{

Ω11 : [w1(s
(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c )]a2
1 +(4a2

0 +4L2
a−8a0La)ξ 2

1 ≤ 0

Ω12 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c −2ξ1 ≥ 0,

(45)
then one has 0< N < 1.
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(b) If N1 ≤ 0 andN2 ≤ 1, i.e.,
{

Ω11 : [w1(s
(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c )]a2
1 +(4a2

0 +4L2
a−8a0La)ξ 2

1 ≤ 0

Ω̄12 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c −2ξ1 ≤ 0

(46)
whereΩ̄12 is the compliment of the subsetΩ12, then there exists anN such
that 0< N < N2 ≤ 1.

(c) If N1 ≥ 0 andN2 ≥ 1, i.e.,
{

Ω13 : [w1(s
(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c )]a2
1 +(4a2

0 +4L2
a−8a0La)ξ 2

1 ≥ 0

Ω12 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c −2ξ1 ≥ 0,

(47)
then there exists anN such that 0≤ N1 < N ≤ 1, with the conditionN1 < 1,

i.e.,

Ω14 : (w1(s
(1)
c ,q(1)

c )+w2(s
(1)
c ,q(1)

c )−8ξ1)a
2
1 +(4a2

0 +4L2
a−8a0La)ξ 2

1 < 0.

(48)

(d) If N1 ≥ 0 andN2 ≤ 1, i.e.,
{

Ω15 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c −2ξ1 ≤ 0

Ω̄12 : 12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c −2ξ1 ≤ 0,

(49)

then one has 0≤ N1 < N < N2 ≤ 1, with the conditionN1 < N2, i.e.,

Ω16 :
(w1 +w2)a2

1 +(4a2
0 +4L2

a−8a0La)ξ 2
1

8ξ1a2
1

<

√

12ξ4(k
(1)
c )2 +2ξ8(l

(1)
c )2 +6ξ6k(1)

c l (1)
c

2ξ1

(50)

wherew1 +w2 = (w1 +w2)(s
(1)
c ,q(1)

c ).

Therefore, for all the above cases there exists anN such that 0< N≤ 1 in which
inequality (15) holds for allx≥ La andy≤ Lb.

Finally, the general map (1) has no chaotic attractors if allthe above inequalities
hold. Hence we have proved the following theorem:

Theorem 1 If ∩i=12
i=1 Ωi 6= /0, or ∩i=11

i=1 Ωi ∩Ω̄12 6= /0, or ∩i=14
i=1,i 6=11Ωi 6= /0, or ∩i=10

i=1 Ωi ∩

Ω̄12∩Ω15∩Ω16 6= /0, then the general quadratic map of the plane given by equation
(1) has no chaotic attractors(x,y) with the condition x≥ La and y≤ Lb, where La
and Lb are given by (5).
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An immediate and fundamental result of the Theorem 1 is givenby

Theorem 2 If (ai ,bi)0≤i≤5 ∈ ∪i=12
i=1 Ω̄i , or (ai ,bi)0≤i≤5 ∈ ∪i=11

i=1 Ω̄i ∪ Ω12, or
(ai ,bi)0≤i≤5 ∈ ∪i=14

i=1,i 6=11Ω̄i, or (ai ,bi)0≤i≤5 ∈ ∪i=10
i=1 Ω̄i ∪Ω12∪ Ω̄15∪ Ω̄16, then the

general quadratic map of the plane given by equation (1) has possible (or other
types of solutions, especially, unbounded orbits) chaoticattractors(x,y) with the
condition x≥ La and y≤ Lb, where La and Lb are given by (5).

We conclude with the following remarks:

(a) The above inequalities do not guarantee the boundednessof the attractors.

(b) Not all chaotic or non-chaotic attractors are obtained from the above condi-
tions.

(c) Finding a specific example is not simple because at each step the solution of
third-degree equations and very complicated inequalitieswith 12 unknown
variables are required.

(d) It may be possible to convert the proof to a numerical algorithm.

(e) Some of the above chaotic or non-chaotic attractors can be infinitely or very
large.

At the end of this paper, let us anounce the following open problems:

1. Find sufficient conditions (in the same direction of this paper) that guarantee
the boundedness of the attractors.

2. Find a specific example where the conditions of Theorem 1 or2 holds.

3. Convert the proof to a numerical algorithm.

2 Conclusion

We have given a rigorous proof of the existence and non-existence of chaos in the
general quadratic map of the plane. The proof shows how to locate specific types
of orbits in some cases.

References

[1] G. Grassi and S. Mascolo, “A system theory approach for designing crytosystems
based on hyperchaos,”IEEE Transactions, Circuits & Systems-I: Fundamental the-
ory and applications, vol. 46, no. 9, pp. 1135–1138, 1999.

[2] R. W. Newcomb and S. Sathyan, “An RC op amp chaos generator,” IEEE trans,
Circuits & Systems, vol. CAS-30, pp. 54–56, 1983.



116 Z. Elhadj and J. C. Sprott:

[3] D. A. Miller and G. Grassi, “A discrete generalized hyperchaotic Hénon map circuit,”
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