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Many systems in nature are governed by a large number of agents that interact nonlinearly through
complex feedback loops. When the networks are sufficiently large and interconnected, they typi-
cally exhibit self-organization and chaos. This paper examines the prevalence and degree of chaos
on large unweighted recurrent networks of ordinary differential equations with sigmoidal nonlin-
earities and unit coupling. The largest Lyapunov exponent is used as the signature and measure of
the chaos, and the study includes the effects of damping, asymmetries in the distribution of cou-
pling strengths, network symmetry, and sparseness of connections. Minimum conditions and opti-
mal network architectures are determined for the existence of chaos. The results have implications
for the design of social and other networks in the real world in which weak chaos is deemed
desirable or as a way of understanding why certain networks might exist on “the edge of chaos.”
© 2008 American Institute of Physics. �DOI: 10.1063/1.2945229�

With the advent of readily available fast computers,
much of the interest in nonlinear dynamics has turned to
the study of high-dimensional networks of interacting
agents (or neurons in the case of neural networks). Such
networks, with an appropriate nonlinearity and interac-
tion between the neurons can model a wide range of phe-
nomena in the physical, social, and biological sciences.
Very large networks often exhibit chaos and other fea-
tures that may be universal for large classes of such sys-
tems. Most studies to date have concerned discrete-time
systems (maps) with connections chosen randomly or ac-
cording to some prescription such as fully connected,
scale-free, small-world, or near-neighbor. Here we con-
sider continuous-time, dissipative systems (flows) gov-
erned by ordinary differential equations, but we choose a
particularly simple example in which all the nonzero cou-
plings are of the same magnitude, although possibly of
different signs, so that the effect of network architecture
on the dynamics can be unambiguously studied. We are
especially interested in the conditions under which such
networks are weakly chaotic since such behavior mimics
their natural counterparts and provides the conditions
for self-organization and pattern formation that are so
prevalent in nature.

I. FULLY-CONNECTED RANDOM NETWORKS

As an example of a general, complex, nonlinear,
continuous-time, dynamical system, we consider a network1

of coupled ordinary differential equations with a sigmoidal
nonlinearity such as the hyperbolic tangent:

ẋi = − bixi + tanh �
j=1

j�i

N

aijxj , �1�

where N is the dimension of the system �the number of vari-
ables�. This particular nonlinearity is appropriate because it
models the common situation in nature where a small stimu-

lus produces a linear response but the response saturates
when the stimulus is large, thereby avoiding unbounded and
hence unphysical solutions. With an appropriate choice of
the vector bi and the matrix aij, this system can exhibit a
wide range of dynamics including chaos for N as small as 4,
and with a sufficiently large N, it can approximate to arbi-
trary accuracy any dynamical system2 ensuring, in principle,
that the results are relevant to any kind of large network. The
details of the system being modeled are contained in these
values. In what follows, it will be convenient and sufficient
to take bi=b for all i as the bifurcation parameter. This sys-
tem is equivalent to an alternate form2,3 in which the hyper-
bolic tangent is inside the summation. The −bx term is analo-
gous to frictional damping and guarantees that the solutions
are bounded with an attractor for b�0.

Equation �1� can be considered as an artificial neural
network,4 in which the neurons accept weighted inputs from
all the other neurons and nonlinearly squash their sum. As a
model of the brain, the signals could represent neural firing
rates, and the connections would represent synapses. In a
food web, the signals could represent the population of the
various species, and the connections would represent feed-
ing. In a financial market, the signals could represent wealth
of the investors, and the connections would represent trades.
In a political system, the signals could represent voters’ po-
sition along some political spectrum such as Democrat/
Republican, and the connections would be the flow of infor-
mation between individuals that determine their views. In
general, the network could represent any collection of non-
linearly interacting agents such as people, firms, animals,
cells, molecules, or any number of other entities, with the
connections representing the flow of energy, data, goods, or
information among them. In each case, there is an implicit
external source of energy, money, information, or other re-
source and usually some loss of that resource from the
system.
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The system has a static equilibrium with all xi=0 that
would represent the state of the system in the absence of
external resources, but it can be driven away from that equi-
librium by the positive feedback among the neurons, which
implies an external source of energy or other resource not
explicit in the equations. The damping coefficient �b� de-
scribes the rate at which the system decays to its equilibrium
state in the absence of external resources. Decreasing b is in
some sense equivalent to increasing the interactions among
the agents and hence the flow of resources through the sys-
tem. Similar and more extensive studies have been done on
discrete-time neural networks �iterated maps�,5,6 but such
models are less common in the physical sciences and lead
too easily to chaotic solutions that may not be physically
realizable.

A system such as this can exhibit three types of dynam-
ics. �1� Solutions can approach a static equilibrium and
thereafter remain forever. Such a system would be “dead,”
literally in the case of the brain or a food web, but also an
unhealthy financial or political state with all individuals
locked into their wealth or political views and unresponsive
to the other individuals. �2� Solutions can be periodic �or
quasi-periodic�, cycling repeatedly through the same se-
quence of values. A person whose brain behaved in such a
way would be “stuck in a rut” and not likely to have any
creativity or adaptability. �3� Solutions can be chaotic, which
is arguably the most healthy state for a natural network, es-
pecially if it is only weakly chaotic so that it retains some
memory but can explore a vastly greater state space. Weakly
chaotic networks exhibit the complex behavior that we nor-
mally associate with intelligent living systems.

Our interest here is in the generic behavior of such net-
works, in particular the likelihood that they will exhibit each
of the above dynamics. For that purpose, we take a large but
still tractable value of N=317 �a prime number approxi-
mately equal to �105� and select the aij values randomly as
�1 /��N−1� with a mean of zero. In contrast to other
studies,7 the matrix is asymmetrical �aji�aij�, which compli-
cates theoretical analysis but makes the model more general
and enriches the dynamics. Initial conditions are taken as
uniformly random in the range −1�xi�0��1, and the equa-
tions are iterated using a fourth-order Runge-Kutta integrator
with an adaptive step size8 and an absolute error bound of
10−6 at each step.

The Lyapunov exponent is calculated using the method
in Ref. 9. An N-dimensional system has N Lyapunov expo-
nents, but this paper will be concerned primarily with the
largest Lyapunov exponent since its sign indicates the nature
of the dynamics. A practical problem is that the value often
converges slowly with large fluctuations, especially in the
vicinity of bifurcations. The orbit must be followed for a
long enough time to reach and thereafter sample all regions
of the attractor, whose dimension can be �N /2. Conver-
gence of the Lyapunov exponent is ensured by demanding
that the amplitude of the fluctuations over the previous thou-
sand time steps be somewhat less than the resolution of the
plot. Even so, many of the figures in this paper required
several days of computation.

Values of b were chosen uniformly in the range 0�b
�2, and the Lyapunov exponents for 400 random, fully con-
nected networks are plotted in Fig. 1. Note that the scale on
b is backwards so that the network activity increases to the
right as the damping is reduced. Three regimes are evident in
the figure. For strong damping �b�1�, most Lyapunov ex-
ponents are negative, implying a stable equilibrium. For in-
termediate damping, most Lyapunov exponents are zero, im-
plying a periodic �limit cycle� or quasi-periodic �attracting
torus� solution. For weak damping, most Lyapunov expo-
nents are positive, implying a chaotic solution and accompa-
nying strange attractor. The smooth curve in Fig. 1 shows a
simple piecewise-continuous function

� = 1 − b �b � 1�, � = 0 �1 � b � 0.5� ,

�2�
� = b�0.5 − b� �0.5 � b � 0� ,

which was previously used10 to fit a similar case with N=101
and Gaussian random weights. The case here has a slightly
larger maximum Lyapunov exponent ���0.07�, which none-
theless occurs near b=0.25, and a smaller periodic region
�where �=0�, attributable to the higher N rather than to the
different distribution of aij values. This relatively small
Lyapunov exponent is consistent with the appealing but con-
troversial idea that complex adaptive systems evolve at the
“edge of chaos.”11 This system exhibits the quasi-periodic
route to chaos that is thought to be generic for high-
dimensional systems12,13 with a Lyapunov exponent that de-
pends only weakly on the details of the interactions and
hence may be universal in the limit of infinite N.

The results above are for the case in which the interac-
tions aij are equally positive and negative �mean zero�. It is
interesting to ask what happens when the random interac-
tions have a bias toward negative or positive values. Figure 2
shows the largest Lyapunov exponent with b=0.25 for a col-
lection of 500 networks with N=317 and different biases. A
bias of −1 corresponds to all aij negative �all agents compet-
ing�, and a bias of +1 corresponds to all aij positive �all
agents cooperating�. Strong competition reduces the
Lyapunov exponent, but preserves the chaos, while even

FIG. 1. Largest Lyapunov exponent for a collection of 400 fully connected
artificial neural networks in Eq. �1� with N=317 and random weights.
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modest cooperation drives the system into a stable saturated
state, with a rather abrupt phase transition when more than
about 55% of the agents are cooperating. The system is near
maximally chaotic when there is an equal amount of coop-
eration and competition, but that condition is very close to
the critical state. This result implies that a network of mostly
competing agents has more interesting and perhaps more
healthy dynamics than one in which the agents are primarily
cooperating and the dynamics are stagnant. Perhaps the drive
to compete for wealth is the reason financial markets are so
inherently chaotic. Note that a network with nearly all agents
competing is at “the edge of chaos” �a very small positive
Lyapunov exponent�.

Equally interesting is to ask what happens when the
agents interact with bidirectional symmetry �aji=aij� or bidi-
rectional antisymmetry �aji=−aij�, but with half competing
and half cooperating. Figure 3 shows the largest Lyapunov
exponent with b=0.25 for a collection of 250 networks with
varying degrees of bidirectionality, where +1 corresponds to
total bidirectional symmetry and −1 corresponds to total bi-
directional antisymmetry �or skew symmetry�. Both ex-
tremes suppress the chaos, but there is a large intermediate
region where even a modest asymmetry preserves the chaos.
Such a result is perhaps relevant to food webs, where
predator/prey interactions have skew symmetry, while other
interactions �bees and flowers, for example� are symbiotic.

II. DILUTED NETWORKS

Large networks in nature are not likely to be fully con-
nected, especially if the interactions are of similar magni-
tude, since that would imply an enormous number of inter-
actions and would be wasteful of resources. This section
describes the dynamics of diluted networks14,15 governed by
a sparse matrix of interactions �most aij values are zero�. For
this purpose, we define the connectivity as the fraction of
connections �aij values� that are nonzero. Thus, the fully con-
nected networks described above have a connectivity of 1,
and a network in which each neuron gets an input from only
one other would have a connectivity of 1 / �N−1� and can

FIG. 2. Largest Lyapunov exponent for a collection of 500 fully connected
artificial neural networks in Eq. �1� with N=317 and b=0.25 with random
weights but biased to control the fraction of interactions that are positive.

FIG. 3. Largest Lyapunov exponent for a collection of 250 fully connected
artificial neural networks in Eq. �1� with N=317 and b=0.25 with random
weights but chosen to control the fraction of interactions that are symmetric
�aji=aij�.

FIG. 4. Largest Lyapunov exponent for a collection of 250 artificial net-
works in Eq. �1� with N=317 and b=0.25 with random weights but with
varying degrees of connectivity.

FIG. 5. Largest Lyapunov exponent for a collection of 750 fully connected
artificial networks in Eq. �1� with b=0.25 and random weights as a function
of network size �N�.
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therefore be arranged into a single continuous ring with only
near-neighbor interactions and information propagating uni-
directionally around the ring �assuming only those neurons
that influence others are assumed to be part of the network�.
Networks with yet smaller connectivity necessarily have in-
active neurons and thus can be reduced to one or more
smaller networks, the limiting case of which will be consid-
ered in the next section.

Figure 4 shows a collection of 250 networks with b
=0.25 and different connectivities on a log scale. Clearly the
networks can be made quite sparse �only a few inputs per
neuron� without affecting the largest Lyapunov exponent un-
til the networks degenerate into a number of smaller net-
works. To confirm that the loss of chaos when the connec-
tivity is less than about 1% is due to a decrease in network
size, Fig. 5 shows the largest Lyapunov exponent for a col-
lection of 750 fully connected networks with b=0.25 for
values of N from 1 to 1000. Large networks are apparently
always chaotic, while small networks are only rarely so, with
the transition around N=50. Figure 5 also indicates why N
=317 was chosen, since for that value, nearly all networks
for a given b have the same qualitative behavior as even
larger networks.

These results imply that a healthy network does not need
to be very highly connected, but that some connectivity is
crucial. In a food web, it is important that each species has
multiple food sources and provides food for several others.
Electing the best political leaders requires that each voter is
influenced by at least a few others and in turn influences
several others.

III. MINIMAL NETWORKS

These observations raise the question of how small a
network of this type can be and still exhibit chaos and what
are the properties of such a minimal network. Although
chaos becomes increasingly rare as N decreases, a brute-
force search indicates that the smallest such network has N
=4. Examination of several million cases with N=4 indi-
cated that the case with the greatest Lyapunov exponent is

ẋ1 = − bx1 + tanh�x4 − x2�, ẋ2 = − bx2 + tanh�x1 + x4� ,

�3�
ẋ3 = − bx3 + tanh�x1 + x2 − x4�, ẋ4 = − bx4 + tanh�x3 − x2�

with b=0.043, for which ���0.031 64,0,�0.073 13,
�0.130 51� as determined using the Wolf algorithm16 with a

FIG. 6. Route to chaos for the minimal network in Eq. �3� with N=4 �a� Lyapunov exponents, �b� Kaplan–Yorke dimension, �c� bifurcation diagram, and �d�
cycle time.
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Kaplan–Yorke dimension17 of DKY=2.432 63. Its route to
chaos as shown in Fig. 6 resembles the much more compli-
cated cases in Fig. 1 except that the chaos only exists over
two relatively narrow ranges of b. Initial conditions are not
critical, but are taken as xi�0�= �1.2,0.4,1.2,−1�, which is
near the attractor for b=0.043.

This case is sufficiently simple to invite theoretical
analysis. For large, positive values of b, the equilibrium at
the origin is stable with eigenvalues that satisfy the equation

�4 + 3�2 + � + 1 = 0, �4�

where �=−b−�. Equation �4� has solutions �
=0.203 723�1.663 928i and �=−0.203 723�0.560 668i.
The largest two Lyapunov exponents for large b are thus

equal and given by �=0.203 723−b, and a Hopf bifurcation
occurs at b=0.203 723 with angular frequency 	
=0.560 668, in agreement with Fig. 6. For smaller values of
b, a limit cycle forms as shown in Fig. 7 and grows in size as
b decreases until a pitchfork bifurcation occurs at b
�0.065 12, whereupon a pair of symmetric limit cycles are
born. These limit cycles continue to grow until a period-
doubling cascade begins at b�0.049 29, culminating in
chaos at b�0.0476 with a pair of symmetric strange attrac-
tors that undergo an attractor-merging crisis18 at b�0.0450.
The chaos persists, except for periodic windows, until an
inverse period-doubling cascade begins at b�0.041 85, lead-
ing eventually to a symmetric limit cycle, whereupon a simi-
lar sequence occurs at a larger scale with a new band of

FIG. 7. Attractors at various values of b for the minimal network in Eq. �3� with N=4.
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chaos around b=0.010, where the Lyapunov exponents are
�= �0.002 10,0 ,−0.011 76,−0.030 34� with a Kaplan–Yorke
dimension of DKY=2.178 45. There is a narrow band around
b�0.0126 where an attracting 2-torus exists with Lyapunov
exponents �= �0,0 ,−0.000 444,−0.049 956�, as shown in
Fig. 8. Figures 9 and 10 show Poincaré sections for the cha-
otic bands at b=0.043 and b=0.010, respectively, in the x1x2

plane for x4=0.
It would be interesting to implement this system elec-

tronically using the saturation properties of operational am-

plifiers as the sigmoidal nonlinearity, although the narrow
range of damping over which it is chaotic would likely make
the circuit rather delicate.

IV. FULLY CONNECTED CIRCULANT NETWORKS

Now consider cases in which the neurons are arranged in
a homogeneous ring with each neuron interacting with its
neighbors in an identical fashion. The weight matrix then
becomes a vector with N−1 components aj, and the network
takes the form

ẋi = − bxi + tanh �
j=1

N−1

ajxi+j , �5�

where aj = �1 /��N−1� and xi+j =xi+j−N for i+ j�N �periodic
boundary conditions�.

Chaos is very rare in such networks, even with N=317,
but it does exist, as Fig. 11 shows. The bifurcation sequence
is similar to the noncirculant networks previously described.
The distribution of aj values for this case is unremarkable
and seemingly random with 156 positive and 160 negative.
However, it is remarkable that the dynamics in the periodic
and chaotic regimes are asymmetric �the xi values are not all
equal� even though the equations are symmetric. This
symmetry-breaking is a common but counter-intuitive fea-
ture of such circulant networks. It is necessary to use asym-
metric initial conditions to avoid synchronization that would
preclude the chaos, but they are otherwise not critical except
when there are multiple coexisting attractors. The symmetric
solution is unstable, and so any small perturbation of the
initial conditions from exact symmetry will suffice.

Circulant networks provide the opportunity to study spa-
tiotemporal chaos. One way to illustrate this behavior is with
a spatiotemporal plot in which the values of xi�t� are plotted
in the it plane using a gray scale, as shown in Fig. 12 for the

FIG. 8. Attracting 2-torus at b=0.0126 for the minimal network in Eq. �3�
with N=4.

FIG. 9. Poincaré section in the x1x2 plane for the minimal network in Eq. �3�
with b=0.043 and x4=0.

FIG. 10. Poincaré section in the x1x2 plane for the minimal network in Eq.
�3� with b=0.010 and x4=0.
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case above with b=0.25. This case has a largest Lyapunov
exponent of �=0.0248. It shows some nearly periodic,
counter-rotating structures. The initial conditions in Fig. 12
were chosen on the attractor, but random initial conditions
would permit one to observe the self-organization that is so
characteristic of networks in ecology �niches�, finance �pock-
ets of wealth�, and politics �red/blue States�.

V. DILUTED CIRCULANT NETWORKS

Circulant networks can also be diluted, which even fur-
ther reduces the number of parameters. Diluted ring net-
works have been previously studied19 using both discrete-
time and continuous-time models,20 but typically not with
circulant matrices. As with fully connected circulant net-
works, chaos is rare in diluted circulant networks and is

apparently nonexistent in maximally diluted circulant net-
works �each neuron receiving an input from only one other�.
However, there are some highly diluted cases with N=317
that do exhibit chaos, one example of which is

ẋi = − bxi + tanh�xi+42 − xi+126 + xi+254� . �6�

Its route to chaos is shown in Fig. 13 and the corresponding
spatiotemporal plot for b=0.36 is shown in Fig. 14, where
the largest Lyapunov exponent is �=0.0381. An interesting
unanswered question is why those three connections give
chaos while most others do not. In fact, changing any of the
connections one place to the right or left �replacing 126 with
125 or 127 in Eq. �6�, for example� or even changing N from
317 to 316 or 318 destroys the chaos for b=0.36. However,
the case in Eq. �6� is robustly chaotic in the sense that no
periodic windows are evident in Fig. 13 over a wide range of
b. One clue might be the fact that 126 is 3
42, while 254 is
approximately 6
42.

FIG. 11. Route to chaos for a fully connected circulant network in Eq. �5�
with N=317.

FIG. 12. Spatiotemporal plot of a fully connected circulant network in Eq.
�5� with b=0.25 and N=317.

FIG. 13. Route to chaos for the diluted circulant network in Eq. �6� with
N=317.

FIG. 14. Spatiotemporal plot of the diluted circulant network in Eq. �6� with
b=0.36 and N=317.
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VI. MINIMAL CIRCULANT NETWORKS

It is interesting to find the circulant network of the form
of Eq. �5� with the smallest N for which chaos occurs. An
extensive search indicates that such a network has N=5, and
the case with the largest Lyapunov exponent appears to be

ẋi = − bxi − tanh�xi+2 + xi+4� , �7�

whose largest Lyapunov exponent is �=0.0248 at b=0.12.
Its route to chaos is shown in Fig. 15, and the attractor pro-
jected onto the x1x2 plane is shown in Fig. 16. This is a case
worthy of further study. This is also a case that would be
interesting to implement electronically using saturating op-
erational amplifiers, although its chaotic operation is also
likely to be rather delicate.

VII. NEAR-NEIGHBOR CIRCULANT NETWORKS

Finally, we consider the case in which the network is
circulant, but the interactions are only with a small number
of near neighbors. Chaos appears to require at least six
neighbors for N=317, and the simplest example appears to
be

ẋi = − bxi + tanh�xi+1 + xi+2 − xi+3 − xi+4 + xi+5 − xi+6� , �8�

whose largest Lyapunov exponent is �=0.0831 at b=0.5. Its
route to chaos is shown in Fig. 17, and the spatiotemporal
plot in the it plane is shown in Fig. 18. This case is also
worthy of further study.

VIII. CONCLUSIONS

This paper has reported the prevalence and degree of
chaos in large unweighted recurrent networks of ordinary
differential equations with sigmoidal nonlinearities and unit
coupling. Such networks are generally chaotic when there
are sufficiently many neurons, even when each neuron has
only a few connections to the others. Chaos tends to be sup-

FIG. 15. Route to chaos for the minimal circulant network in Eq. �7� with
N=5.

FIG. 16. Strange attractor for the minimal circulant network in Eq. �7� with
b=0.12 and N=5.

FIG. 17. Route to chaos for the minimal circulant network in Eq. �8� with
N=317.

FIG. 18. Strange attractor for the minimal circulant network in Eq. �8� with
b=0.5 and N=317.
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pressed when symmetries are imposed on the connections,
but there are some highly diluted and highly symmetric situ-
ations in which chaos occurs. In particular, circulant net-
works, in which the neurons are arranged in a homogeneous
ring with each neuron interacting identically with its neigh-
bors, provide elegant examples of symmetry breaking, self-
organization, and spatiotemporal chaos.

The implication to real-world networks is that they are
likely to be chaotic only if they are sufficiently large and
have a structure that is not too highly ordered. It is likely that
networks evolve �dynamics of the network� so that the dy-
namics on the network are weakly chaotic since the networks
would otherwise lose their utility and adaptability. Such net-
works become increasingly delicate as their size and interac-
tivity decrease, showing the importance of biodiversity, a
healthy political discourse, and a robust economy.
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