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A simple diffusion model showing anomalous scaling
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A number of iterated maps and one flow, which show chaotic behavior, have been studied
numerically and their time evolution expressed in terms of higher-order moments M, (). All the
cases show anomalous behavior with M, (1) ~ 2", with g(m) # am. A simple analytic treatment is
given based on an effective diffusion that is dependent on both space and time. This leads to a form
for g(m)/m=a—b/m, which is in good agreement with numerical results. This behavior is attributed
to the presence of convective motion superimposed on the background diffusion, and hence this
behavior is expected in a wide variety of maps and flows. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2969429]

I. INTRODUCTION

It is now accepted that experimental data from a wide
range of observations in the form of a time series show pseu-
dorandom or chaotic characteristics. This behavior is often
quantified in terms of the Hurst exponent. If one specifies the
time series as X(z,), where n runs from 1 to N, then the Hurst
exponent vy is defined by

N
M, = > X(1,) = DN*,

n=1

where D is a constant equal to the conventional diffusion
coefficient when y= % An associated probability distribution
function (PDF) P(X,?) can then be introduced and assumed
to satisfy a continuous diffusion equation

oP PP
—=D—;.
ot X

However, this is only consistent if the higher moments sat-
isfy

N
Mo, (N) = 2 X*"(t) o N™.

n=1

Conventional diffusion theory is a pillar upon which
much of modern science is based, but there are many phe-
nomena now known for which y# 1/2. Such examples arise
in fluid turbulence, plasma physics, earthquake science, bio-
physics, and economics (see, for example, Refs. 1 and 2).
The question then is whether it is possible to describe such
systems by some extension of the conventional diffusion
equation. However, before considering this possibility, it is
necessary to describe in more detail the typical behavior
common to a wide range of such phenomena.

For example, it has been found in a range of satellite
data® that although y# 1/2, the moments satisfy

1070-664X/2008/15(8)/082308/7/$23.00

15, 082308-1

N
Mm(N) = 2 |X(tn)|m = AmNMn

n=1

for large N. (We restrict ourselves to PDFs that are symmet-
ric in X.) This behavior is incorporated into a PDF by im-
posing a scaling restriction

P(X,t) = tlyPs(X/ﬂ, 1. (1)

It is then natural to ask what equation P; satisfies. If one
assumes that any such equation will at most only depend on
second derivatives, then one finds that to be consistent with
the above scaling, P, satisfies a general form of the Fokker—
Planck equation

oP
Js

g oP,
s = a_g{[clf"‘ Co(2 - 1/y)E7VEP, + CO§2—1/7(9_§} ,

(2)

where £=X/t7, Cy, and C; are constants, and s=In¢. The
derivation of such an equation and comparison of the
solution of P, in the asymptotic limit of s— o with that
obtained directly from data is discussed in Ref. 3. In the
limit of y=1/2 and s— e, the solution for P, reduces to a
Gaussian. However, for y# 1/2, the PDF shows long tails
with an asymptotic behavior of the form &%e=F¢.

A microscopic model that leads to simple scaling is
readily obtained by considering the Langevin equation
equivalent to the above Fokker—Planck equation (2)

jl’—f _ (&) + DO W(s),
)

where W(s) symbolizes white noise, C(&) describes con-
vective behavior, and D(&) represents diffusion. Here
C(&)=C1E+Cy(2-1/y) €Y7 and D(€)=Cy& 7. Note that,
except for y=1/2, the presence of diffusive behavior
(Cy#0) implies enhanced convection in both the Langevin
and Fokker—Planck formulations.

© 2008 American Institute of Physics
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FIG. 1. Intermittency in the Chirikov map for K=2.21r.

However, not all data show the scaling described above.
A classic example is fluid turbulence where the low-order
moments show a more generalized scaling of the form

M,,(N) = A, N,

This is usually referred to as multiple scaling to distinguish it
from the single scaling described above where g(m)=ym.
Multiple scaling is usually taken as evidence of intermit-
tency. A detailed discussion of the implications of the above
form and its relation to the turbulent flow of liquids is given
by Frisch and Kolrnogorov.4

Although the Navier—Stokes equations of fluid dynamics
probably lead to multiple scaling as described by Ref. 4, the
computational, analytic, or experimental effort needed to un-
derstand the relationship is huge. In the following, we
discuss both numerically and analytically two maps, the
Chirikov map,2 the Weiss map,5 and a flow proposed by
Thomals,6 show that the moments scale as above, and obtain
a form for g(m). Although the time series for these three
examples show intermittency, the physical basis for the non-
standard behavior in each case is different.

The models discussed in this paper arise naturally in
plasma physics, as outlined below, and have solutions that
are examples of what Shlesinger et al.” call “strange kinet-
ics.” That is a more or less random motion, which is diffu-
sionlike, which itself is interrupted by large jumps that show
"ballistic” behavior. An example showing this behavior in the
Chirikov map is illustrated in Fig. 1, while the paper by
Sprott and Chlouverakis® gives an example arising in a
continuous-time system. For the Chirikov map, Shlesinger
et al.” relate this ballistic motion to the presence of holes in
a phase space around which the particle motion is controlled
by cantori in space. This leads to the possibility of a particle
getting stuck in an accelerator mode for a limited time,
which leads to the ballistic motion. Their paper should be
consulted for an in-depth discussion of this phenomenon. In

Phys. Plasmas 15, 082308 (2008)

the Weiss map model, which describes the motion of par-
ticles in a traveling wave, the particles in the chaotic region
can be trapped in nearly periodic orbits for a limited time.
This stickiness is analogous to but different from the sticki-
ness of the accelerator modes. The Labyrinth model is a
continuous-time model describing Lagrangian chaos.” The
numerically obtained solutions suggest the presence of holes
in phase space through which the particle can move freely
for a limited time® giving rise to ballistic motion. At present
we have no detailed microscopic theory of the particle mo-
tion in or near these holes, and so we simply call them
“worm holes.”

The microscopic approach as discussed in Shlesinger
et al.” leads naturally to questions such as "what is the prob-
ability of ballistic motion and what is the stickiness factor?”
However, in this paper we consider a macroscopic approach
by considering the structure of the moments as defined above
and in particular the higher-order moments. We expect and
find evidence for “ballistic” behavior in all our examples, but
we do not look closely at the detailed phase space behavior.

For conventional diffusion, it is well known that the mo-
ments scale exactly as g(m)/m:% and the PDF is Gaussian,
that is P(x) ~exp(—ax?). However, for all the models consid-
ered in this paper, and for what we believe is common be-
havior, g(m)/m is not constant and the PDF shows the pres-
ence of tails in that P(x) ~x (to some power) exp(—ax). This
latter behavior is not surprising and is an indication of bal-
listic motion. A microscopic model, namely, that of Levy
ﬂights,10 interestingly does not show this behavior since for
such cases g(m)/m is a constant.

Although we consider here data generated from com-
puter models, the approach can be easily applied to experi-
mental data and used to study quantitatively the anomalous
diffusion of plasmas in magnetic fields.

Il. CHIRIKOV MAP

Introduced many years ago by Chirikov, this map has
received a great deal of attention (see, for example, Lichten-
berg and Liebermanz), but as far as we know, the structure of
the moments, other than the second, has not been considered.
The map can be written in the form

Pn+1=Pn + K sin 0}1’

6n+1 = 0n + Pu+ls

where K is a constant. In the notation of the earlier section,
p,=X(1,). The map is area-preserving, derivable from a
Hamiltonian, and shows chaotic behavior for sufficiently
large values of K. The chaos has been quantified in terms of
conventional diffusion with y=%, and the diffusion coeffi-
cient evaluated as a function of K. However, this approach
has always been treated with caution as originally pointed
out by Chirikov and discussed more fully by Ishizaki e al."'
because of the presence of so-called accelerator modes. In
fact, the latter authors showed that for a range of K values,
the second moment of p, scales as a power of N but with a

value of vy different from % They claimed that their results
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FIG. 2. Anomalous scaling in the Chirikov map as a function of K.

showed simple scaling, but they provided no evidence by
calculating the higher moments.

A simple example of an accelerator mode is where the
initial conditions are py=0 and K sin fy=21r. Then for all n,
pp,=27n, and 6,=6, (mod 27). If all initial conditions be-
haved in a similar manner, then M,(N)«N?. Such solutions
only occupy a small area of phase space — areas enclosed by
a Kolmogorov—Arnold-Moser (KAM) surface through
which trajectories cannot pass. Outside this surface is a cha-
otic region where trajectories can become trapped in accel-
erator modes but only for a finite number of iterations. It is
this possibility that leads to anomalous behavior. This varia-
tion of p, with n is illustrated in Fig. 1 where the dramatic
effect of the particle becoming attached to an accelerator
mode is clearly shown. There also exist higher-order accel-
erator modes where p increases by 27 only after several
iterations, not just one. It is straightforward to illustrate this
behavior by simply iterating the map for various values of K
with a range of initial conditions. Care is taken to avoid
initial conditions inside a KAM surface. From the general-
ized form of scaling introduced above, we have

In M, (N)=gm)InN+1InA,,

and hence we will refer to g(m) as the slope. Since g(m)
=m/2 corresponds to simple diffusion, we consider it as an
indicator of anomalous diffusion. In Fig. 2, g(m)/m is plot-
ted versus K for values of m in the range of 1<=m=20.
There is clear evidence of anomalous behavior for a whole
range of K values. To examine the behavior more closely,
three different values of K were chosen, namely, K=2.27
where the anomalous behavior is clear, K=3.27 where
simple diffusion is expected, and K=1.87 where the type of
behavior is less clear.
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FIG. 3. (Color online) Simple and anomalous scaling in the Chirikov map as
a function of m.

In Fig. 3, g(m)/m is plotted as a function of m for
K=2.2 from which it is clear that since it is not constant,
the behavior excludes simple scaling [g(m)=am]. Thus for
this value of K, the map is an example of a system showing
generalized scaling resulting from the strong accelerator
modes.

For K=3.21, the value of g(m)/m is % to within numeri-
cal error, which implies simple diffusion (constant D), con-
sistent with the absence of an accelerator mode.

The weaker behavior for K=1.87 in Fig. 3 is expected
from the phase space plots for different K values where the
number of holes associated with accelerator modes is
smaller.

The variation of the PDFs with p for these three values
of K is shown in Fig. 4. As expected for K=3.27r, the distri-
bution is Gaussian, but the other two cases show the pres-
ence of long tails, the more pronounced tail being associated
with K=2.27 where the strongest accelerator modes exist.

Very similar behavior is found for a map discussed by
Antonsen and Ott'> where the Pn+1 in the Chirikov map is
replaced by K sin p,,,;.

lll. THE WEISS MAP

In a study of the effect of traveling waves on the motion
of fluid particles, Weiss'? introduced a simple map

Xp+1 =xn+ k(yiﬂ - 1)’

Yne1 =Yn— k sin Xn-

Here k is a constant, which for interesting chaotic effect lies
in the range 0.2 <k <<0.4. The solution is illustrated in Fig. 5.
A typical particle that starts in the chaotic channel drifts to
the right with a well-defined velocity until it reaches the
neighborhood of the verticals at x=2nm, where the particle
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FIG. 4. (Color online) Normalized PDF for the Chirikov map after 1000
iterations.

trajectory is held up in regions of phase space. It is essen-
tially trapped for a time as the particle goes around the bro-
ken separatrix but does not significantly change its position
in x. Though no accelerator modes exist, the presence of the
traveling wave produces an analogous effect. This is illus-
trated in Fig. 6, where the variation of g(m)/m as a function
of m is shown.

FIG. 5. The Weiss map for k=0.4.
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FIG. 6. (Color online) Scaling of moments in the Weiss map as a function of
m.

IV. LABYRINTH MODEL

This model described by the equations

X=siny,
y =sin z,
Z=sinx,

was proposed by Thomas® and studied in more detail by
Sprott and Chlouvereakis.® It shows chaotic behavior but
also a form of intermittency due to the particle orbits, which
normally undergo diffusive motion, but occasionally enter
“worm holes™® where they convectively move through phase
space and then emerge later to undergo further diffusion. The
approximate form of g(m)/m versus m as shown in Fig. 7 fits
the same pattern as for the two maps, but now the anomalous
behavior is associated with the worm holes.

V. ANALYTIC TREATMENT

A simple model for studying analytically the motion of a
particle when simple diffusion coexists with accelerator
modes is studied in some detail by Yannaopoulos and
Rowlands.” In that model, a particle moves on an infinite
two-dimensional lattice of points. Jumps between adjacent
points mimic diffusion, while longer ones play the role of
accelerator modes. In that paper, the ordinary diffusion was
described in the continuum limit. Here we make a further
simplification by taking the continuum limit for the accelera-
tor modes. The results obtained in that paper show that the
limiting behavior does not affect the long-time behavior of
the system. Since here we are interested in the moments, and
the moments themselves are only defined in the long-time
limit, taking the continuum limit is justified. The basic equa-
tion is then (C6) of that paper with N=0. [The condition
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FIG. 7. (Color online) Scaling of moments in the labyrinth model as a
function of m.

N=0 is seen to be equivalent to the continuum limit if the
summation of the left-hand side of (C4) is replaced by an
integral.] Then we may write this equation for the one-
dimensional case in the form

(u+Degy)p(Lu) =1, 3)

where
Doi=DE—-[(1 - e u—il) + (1 — ") +il)].

Here p(l,u) is the double transform of the probability func-
tion p(x,?) such that

p(x,t):f e”xf e "p(Lu)dldu.
—o0 0

Accelerator and retardor modes are included on an equal
footing in the above equation, whereas (C6) only included
the accelerator modes. {(u) is the Laplace transform of y(z),
and (1) is defined as the probability that a particle stays in
an accelerator mode for more than a time ¢, divided by the
time 7.

In the above form, the presence of the accelerator modes
gives rise to an effective diffusion D.g. Given the PDF, one
can calculate the even moments using the relationship

~ (921)]3(1»”)
My = (—1pZ 2ot
! i’ |z

However, this is only convenient for the lowest moments.
It is shown in Ref. 5 that not all forms for () lead to

anomalous behavior in M,(z), but that a fp(u) of the form
(u) = auP"' corresponding to (1)~ 1/t does.

For this reason, we shall assume such a form for J,Zr(u).
Since we are interested in the large-r limit, which corre-
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sponds to the small-u limit, we may expand D as a power
series in [ but only retain the highest derivative of ¢(u) with
respect to u. Thus

N
D=2 (- 1)1 1(2n - 1)!

n=1

where 1,7/” = d’”z:b(u)/ du™. Note that the background diffusion
D does not contribute in this approximation. This sum can be
expressed in closed form as

d \ A
Deff= =21 Sln<1_> lﬁ,
du

so that formally

1

21 si (1‘1)[/
- s\ [—
! d

u

pllu) =

A corresponding expansion for p(l,u) becomes increasingly
complicated, and so we restrict our attention to terms up to
order [°. This gives

1 . 12 4A72 S
pllu)=— 1+W—+l4[iz—£]
u

u u 3u

+16 l,?/v _4&/&///4_ 8&/3 N
60u 3u? u’ )

from which the three lowest moments are readily obtained,
namely,

Myw)i2! = (8- 1) aub™,
M, (u)/4! = 40(B = 1225

- %‘(ﬁ— 1(B-2)(B- 3P,

Mﬁ(”)/G! =8a’(B- 1?10
4 2
- Ta(ﬁ - DX(B-2)(B-3)u**?

a(B-1D(B-2)(B-3)(B-4) 4
+ u .
60

We are primarily interested in the dominant term in M,,(¢)
as t— o, which corresponds to the most singular term in
M, (u) as u—0. Then for B> 1, the above equation gives
M,(u) = uP~*, M, (u)~uP5, and Mq(u)~uP8, suggesting a
general form M,,, (1) ~uP2"_In the time domain, this is
equivalent to M,,,(t)=r*"*1=A so that the slope g(m) is
given, for the even moments, by

_ B-1
g(2m)—2m[1— 3 ]

m

It should be noted that this same form would arise if one
took « as a small parameter and only retained terms propor-
tional to « in the above expansions. Furthermore, the only
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parameter that occurs in the above form for g(m) is the scal-
ing parameter (3, which itself is a measure of the effective-
ness of the accelerator mode to give convection.

The range of validity of this result depends on both m
and . It breaks down for small m if 3 is too large since then
the conventional diffusion specified by the DI* term must be
taken into account. If this latter term dominates, then
M,=1, so that g(m)/m approaches 1/2. In Figs. 3, 6, and 7,
the function g(m)/m is fitted to a function of the form
a—b/m, with excellent agreement found for m=35, corre-
sponding to a value of S of order 2.

On the other hand for <1, the ordering of the terms in

the above expression for MZm(u) is different, and now the
dominant behavior for t—o is such that M,(f)=~t,
My(1) =172, and M(r) =1°-3F suggesting M,,(r) =~ 13-P"2,
so that

gm) 3-8

m 2

Thus for S<<1 the system behaves in a manner which shows
the simple scaling found experimentally in satellite data.
Much of the behavior discussed above can be understood
by considering the Fourier—Laplace transform of the prob-
ability density function of the Chirikov map and the simple
scaling distribution discussed above. If P(x,r) satisfies the
scaling implied by Eq. (1), then the transformed function
must satisfy Eq. (3) with D.g=1"7f(l/u”), where f is an ar-
bitrary function. For the Chirikov map, the approximate
transformed PDF is given by Eq. (3), which for the case

where z?x(u) =auP', is such that D g=u+[PF(l/u). These two
expressions are similar, but as seen above, the time variation
of their moments are fundamentally different.

By virtue of these two examples, we now consider the
general form D.=I"H(l/u’), where a and b are arbitrary
constants and H is an arbitrary function. Then we may write

xnetlxeut

—————dxdudl,
u+ CH(/ub) i

Mn(t) = J P(x,t)x”dx = f

which with the substitutions Ix=z, ut=s, and [/ ub=q reduces
to

e R(s,q,2)
M) =t f 1 +¢“ "H(q)(s/t)*>!

dzdsdq,

where R is independent of ¢. Then for the case of simple
scaling where a=1/vy, b=, and ab=1, we have M,,(t) o ”".
For the model of the Chirikov map, a=8, b=1, and
ab—1=p-1. Then for 8> 1, the denominator in the above
integral can be expanded to give

M, (6)=1""[A, + Ayt 4 -]

However, A; is simply the case where H=0, which is iden-
tically zero for n>0, and thus M, (1) = "1'=(6-D/"] The time
variation of M, (r) agrees with that obtained by the expansion
method and the numerical results for K=2.27.

For a general a and b such that ab> 1, the above discus-
sion holds and
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FIG. 8. (Color online) Normalized PDFs for the Chirikov map at two dif-
ferent times.

M, (t) = (bnl1=(ab=1)/bn]

This is the form that describes the numerical results for
K=1.87. Also note that for ab<<1 the unit term in the de-
nominator can be neglected and the above generalized form
for M,(1) holds.

In summary, the different types of variation with ¢ of the
nth moment can be understood in terms of the scaling of
Di(l,u). The discrepancies found between the analytic
forms for M, (t) and the numerical results for small values of
n suggest that the scaling assumption made for the form of
D(l,u) is not true for small /. This is as expected since for
example the background diffusion has been omitted.

The PDF for the case where D.;=IH(l/u") takes the
form

1
P(x.1) = ZP(&, 7,

where £=x/1". Then by analogy with the treatment of the
simple scaling case where ab=1 and b=y and discussed in
Ref. 3, we can make a reasonable approximation using the
Fokker—Planck equation to describe the dynamics of P(x,1).
In fact, it is identical to Eq. (2) but with s replaced by
(ab—1)s. For the case of simple scaling (ab= 1), this means
that P, is independent of time. However, in general we ex-
pect P, to vary with 7 on a scale of (ab—1)In ¢. This behavior
is confirmed by the simulations of the Chirikov map as
shown in Fig. 8, where it is noted that the case K=2.27 with
the larger value of (ab—1) has the larger change as time
advances.

Yannaopoulos and Rowlands'* have also proposed a
simple model to describe the anomalous behavior found in
the Weiss map. They showed in particular that the first two
moments scaled such that M, =¢"" for the case where the
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trapping rate y(f) scaled as t°. However, it has not been
possible to give simple analytic forms for the higher mo-
ments. Although no accelerator modes are present, the pres-
ence of an externally imposed traveling wave plays the same
role.

VI. DISCUSSION

Two distinct maps, the Chirikov and Weiss maps, and a
flow, the labyrinth model have been solved numerically, and
the various moments M,,(f) calculated as a function of time.
All these cases show the same anomalous behavior in that
M, (1) scales as 2™ for large r, where g(m)/m=~a—pB/m
for sufficiently large m(m>2). This behavior is associated
with the intermittent behavior of the “particle” motion, but
the cause of intermittency is different for the three cases. For
the Chirikov map it is due to the accelerator modes, for the
Weiss map by the fact that the “particles” can move in the
presence of a traveling wave, and for the labyrinth model by
the existence of worm holes in the phase space. These three
effects all have in common that they provide a convective
motion superimposed on background diffusion.

The anomalous behavior in the moments is associated
with the long tails that exist in the PDFs, and is illustrated in
Fig. 4. For K=3.27r, which shows no anomalous behavior,
the PDF is a Gaussian. For K=1.87, which is only weakly
anomalous, the tails are themselves weak, corresponding to
the absence of primary accelerator modes but the presence of
higher-order modes. For K=2.27, where the primary accel-
erator modes are clearly present, the PDF develops pro-
nounced tails.

All this behavior can be modeled by a generalized dif-
fusion Dg(l,u) that scales such that Dgy(l,u)=I*H(l,u").
The time and space evolution of the associated PDF satisfies
a generalized Fokker—Planck equation, which is now nonlo-
cal both in space and time.

Phys. Plasmas 15, 082308 (2008)

For the critical case where a=1/b, the PDF shows the
scaling commonly found in astrophysical data analyzed in
Ref. 3.

From this study it is expected that if some physical
mechanism exists that gives rise to convective motion in the
appropriate phase space, then anomalous behavior as de-
scribed in this paper is expected. This will show up in the
scaling of the higher moments M,,(f) and will be associated
with long-tails in the PDF.
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