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Simplifications of the Lorenz Attractor 
 
J. C. Sprott1, University of Wisconsin, Madison  
 
Abstract: The Lorenz attractor was once thought to be the mathematically 
simplest autonomous dissipative chaotic flow, but it is now known that it is only 
one member of a very large family of such systems, many of which are even 
simpler. Even the system originally proposed by Lorenz is not in its simplest 
possible form. This paper will describe a number of simplifications that can be 
made to the Lorenz system that preserve its dynamics as well as a number of 
chaotic systems that are much simpler and hence can serve as alternate models 
of chaos. 
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INTRODUCTION 

For many years, Ed Lorenz thought he had discovered the 
mathematically simplest system of ordinary differential equations capable of 
producing chaos. His equations (Lorenz, 1963) became a paradigm of chaos, and 
the accompanying strange attractor (Fig. 1), which serendipitously resembles the 
wings of a butterfly, became an emblem for early chaos researchers. Lorenz did 
not set out to discover chaos, but rather he was attempting to find a system of 
equations whose solutions were more complicated than periodic. When he found 
such a system, the sensitive dependence on initial conditions (the “butterfly 
effect”) came as a surprise, but he quickly realized its significance. 

The equations he derived after reducing an original 12-dimensional 
system for modeling atmospheric convection (Saltzman, 1962) to three 
dimensions are 

 
 

      (1) 
 
 
where the overdot denotes a time derivative ( dtdxx / , etc.). Three variables 
(x, y, and z) are needed because the Poincaré-Bendixson theorem (Hirsch, et al., 
2004) states that the most complicated dynamic that can occur with only two 
variables is periodic. The fact that there are three parameters, which Lorenz took 
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as σ = 10, r = 28, and b = 8/3, is no coincidence. One can linearly re-scale the 
variables x, y, z, and t so that four of the seven terms on the right-hand side of 
Eq. (1) have coefficients of 1.0. The choice of where to put the remaining 
coefficients is arbitrary, but Lorenz chose them to represent the Prandtl number 
(σ), the Rayleigh number (r), and the aspect ratio of the convection cylinders (b). 
For the values used by Lorenz, the Lyapunov exponents (Sprott, 2003) are λ = 
(0.9056, 0, −14.5723). This system has been widely studied, and there is a whole 
book devoted to it (Sparrow, 1982), but it is not widely known that it can be 
simplified in several ways. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The Lorenz attractor 

A BETTER BUTTERFLY 

A trivial simplification is to set one or more of the three parameters to 
1.0. There are three ways to do this without destroying the chaos: (r, σ, b) = (4, 
16, 1), (1, 16, 0.03), and (1, −17, −1). The attractors for these three cases 
preserve the double-lobe structure of the Lorenz system as shown in Figs. 2 a-c, 
respectively. The Lyapunov exponents are given by λ = (0.3359, 0, −6.3359), 
(0.0531, 0, −2.0831), and (0.0629, 0, −1.0629), respectively. Note that while all 
the figures in this paper are called “attractors” they are actually just a portion of 
a typical three-dimensional trajectory on the attractor projected onto a plane of 
two of the variables with the third variable displayed in shades of gray and with 
a subtle shadow to give an illusion of depth. 

The Lorenz system is slightly inelegant in the sense that both the time 
scale and the attractor size depend on the parameters, each of which has 
dimensions of inverse time. Equation 1 can be put in dimensionless form by the 

linear transformation xrx  ,  yry  ,  rzrz   , and  

rtt / , leading to the system 
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where the new dimensionless parameters are given in terms of the old ones by 

  r/  ,  r /1 , and  rb  / . While this system still has  
seven terms and two nonlinearities, the parameter space over which it is chaotic 
is now bounded, with its maximum Lyapunov exponent of λ = (0.0713, 0, 
−0.6493) at (α, γ, β) = (0.3, 0.028, 0.25) (Sprott, 2007). More significantly, Eq. 2 
has chaotic solutions even for γ = 0 with values such as (α, γ, β) = (0.6, 0, 0.3) 
where the Lyapunov exponents are λ = (0.0645, 0, −0.9645) with an attractor as 
shown in Fig. 2d. Thus the Lorenz system can be reduced to one with only six 
terms and two parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Simplified variants of the Lorenz attractor 

It turns out that one can do even better by transforming Eq. 1 as 
follows: xx  ,  yy  ,  rzz  , and  /tt  . Then take 

,r but in such a way that R = br/σ2 remains finite, leading to the 
diffusionless Lorenz system (van der Schrier and Maas, 2000) 

 
 

(3) 
 
        , 
which is chaotic for a wide range of the single parameter R including R = 1 as 
shown in Fig. 2e with Lyapunov exponents λ = (0.2101, 0, −1.2101). Its attractor 
has the familiar two-lobe structure of the Lorenz system, but with a higher 
Kaplan-Yorke dimension (Kaplan & Yorke, 1979) of DKY = 2.1736 in contrast to 
the case in Fig. 1 whose dimension is DKY = 2.062. In fact, the system in Eq. 3 
has its maximum dimension of DKY = 2.2354 at R = 3.4693 (Sprott, 2007), which 
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is significantly higher than any other variant of the Lorenz system. A similar 
two-lobe attractor as shown in Fig. 2f is obtained if the xy term in Eq. 3 is 
replaced by y2. Both of these forms were first discovered in a systematic search 
for chaotic systems with only five terms and two quadratic nonlinearities 
(Sprott, 1994). They represent a significant simplification of the original Lorenz 
system since they have two fewer terms and a single parameter (R) with chaos 
for R = 1. 

FOLDED BANDS 

It is not clear how aware Lorenz was of these simplifications to his 
system, but he knew that chaotic systems existed with seven terms and a single 
quadratic nonlinearity (Lorenz, 1993, p. 148): 

One other study left me with mixed feelings. Otto Rössler of the 
University of Tübingen had formulated a system of three differential 
equations as a model of a chemical reaction. By this time, a number of 
systems of differential equations with chaotic solutions had been 
discovered, but I felt I still had the distinction of having found the 
simplest. Rössler changed things by coming along with an even simpler 
one. His record still stands. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Folded bands 

The system to which Lorenz referred is (Rössler, 1976) 
 
 

(4) 
 
     , 
which is chaotic for a = b = 0.2 and c = 5.7 with an attractor as shown in Fig. 3a 
and with Lyapunov exponents λ = (0.0714, 0, −5.3943).  
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What Lorenz did not realize was that Rössler himself had proposed a 
simpler system with only six terms, two parameters, and a single quadratic 
nonlinearity (Rössler, 1979): 
 
 

 (5) 
 
 
(called the prototype-4 system), which is chaotic for a = b = 0.5 with an attractor 
as shown in Fig. 3b and with Lyapunov exponents λ = (0.0938, 0, −0.5938). 

Systems such as Eq. 5 are not rare, and Sprott (1994) reported 14 
additional examples that were not previously known, which prompted Gottlieb 
(1997) to ask “What is the simplest jerk function that gives chaos?” by which he 

meant a system of the form  ),,( xxxJx   .   The term “jerk” comes from the 
fact that in a mechanical system in which x is the displacement, successive time 
derivatives of x are velocity, acceleration, and jerk (Schot, 1978). The third 
derivative is the minimum necessary for chaos in an autonomous flow since it is 
always possible to write such a system in terms of three variables as 

   
 

(6) 
 

             . 
Linz (1997) showed that both the Lorenz system and the Rössler 

system could be written in jerk form, but the equations are complicated and 
inelegant. Eichhorn, Linz, and Hänggi, P. (1998) showed that all 14 of the 
systems discovered by Sprott (1994) as well as the Rössler prototype-4 system 
could be reduced to a hierarchy of seven quadratic jerk equations of increasing 
complexity, the simplest two of which are 
 

 (8) 
and 
 

 (9) 
 
where parameters have been chosen to produce chaos as shown by the attractors 
in Figs. 3c and d with Lyapunov exponents of λ = (0.0647, 0, −1.8647) and 
(0.0856, 0, −0.4856), respectively. These two systems have been studied by 
Eichhorn, Linz, and Hänggi, P.  (2002).  

Meanwhile Sprott (1997) showed that there is an even simpler jerk 
system of the form: 
 

,                (10) 
 
which is chaotic for a small range of the single parameter a around 2.02 with an 
attractor as shown in Fig. 3e where the Lyapunov exponents are λ = (0.0486, 0, 
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−2.0686). Equation 10 can be cast into an equivalent form by differentiating 
each term with respect to time and making the substitution 2/xx  to get 

       
 (11) 

 
whose attractor is shown in Fig. 3f and whose Lyapunov exponents are the same 
as for Eq. 10. Zhang and Heidel (1997) have rigorously proved that there can be 
no simpler chaotic flow. 

All of these systems with a single quadratic nonlinearity have basically 
the same features – a single dominant frequency and a simple topology, usually 
called a “folded band,” but that might better be called a “twisted band.” In this 
sense, they do not resemble the double-lobe Lorenz attractor with its relatively 
broadband power spectrum. The reason is that the Lorenz system has three 
equilibrium points, whereas systems with a single quadratic nonlinearity can 
have only two. Thus they are not so much simplifications of the Lorenz 
attractor, but rather they are different systems worthy of study in their own right.  

JERKY LORENZ-LIKE SYSTEMS 

It is reasonable to ask whether there are simple jerk systems with 
different nonlinearities whose attractors more closely resemble the Lorenz 
attractor. One example with a cubic nonlinearity was discovered long ago by 
Moore and Spiegel (1966) as a model for the irregular variable luminosity of 
stars and is given in slightly simplified form by 
 

.           (12) 
 
Its attractor is shown in Fig. 4a with Lyapunov exponents of λ = 

(0.0652, 0, −1.0652). It has only a single equilibrium point at the origin. Moore 
and Spiegel noted the aperiodic behavior of their solutions and the sensitive 
dependence on initial conditions but were apparently unaware of Lorenz’s 
similar work. Had they published a few years earlier and commented on the 
implications of their results to predictability, they might have become as famous 
as Lorenz. 

Other similar chaotic systems but with three equilibrium points along 
the x-axis are given by 

 
 (13) 

 
 (14) 

 
 (15) 

 
 (16) 

 
 (17) 

xxxxax  

xxxxxx 59 2  

xxxxx 54 3  

xxxxx 45 5  

xxxxx 5tan26  

xxxxx 3sinh 2  

xxxxx  sin3
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 (18) 
 

 (19) 
and 

 (20) 
 
with attractors as shown in Figs. 4b-i and Lyapunov exponents of λ = (0.1722, 0, 
−1.1722), (0.2218, 0, −1.2218), (0.1925, 0, −1.1925), (0.1234, 0, −1.1234), 
(0.1083, 0, −1.1083), (0.0512, 0, −1.0512), (0.1138, 0, −1.1138), and (0.1766, 0, 
−1.1766), respectively. Note that the piecewise linear system in Eq. 20 is 
especially suited for electronic circuit implementation since the signum function 
can be simply implemented with a saturating operational amplifier (Sprott, 
2000). What these systems have in common is that the last two terms sum to 
zero at two non-zero values of x, one positive and one negative, in addition to 
the zero at x = 0. The two non-zero equilibrium points are spiral saddles, just as 
with the Lorenz system. Hence they qualify as simplifications of the Lorenz 
attractor and provide potentially useful models of chaos in much the same way 
as the Lorenz system has in the past. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4. Jerky Lorenz-like systems 
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xxxxx 2tanh7  

xxxxx 2sgn  
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SUMMARY AND CONCLUSIONS 

While the Lorenz system is historically important and useful as a 
paradigm of chaos in continuous-time dissipative systems, it is by no means the 
simplest such example. Its double-lobe structure and chaotic behavior can be 
replicated in a number of other elegant systems containing fewer terms, fewer 
parameters, and a single nonlinearity. Lorenz would certainly have applauded 
these extensions of his seminal work, but he rightly deserves the credit for 
opening the door to such explorations and heralding the implications of chaos to 
the predictability of dynamical systems. 
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