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A simplified Lorenz system with one bifurcation parameter is investigated by a detailed theoreti-
cal analysis as well as dynamic simulation, including some basic dynamical properties, Lyapunov
exponent spectra, fractal dimension, bifurcations and routes to chaos. The results show that this
system has complex dynamics with interesting characteristics.
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1.

In 1963, Lorenz launched the modern era of chaos
when he reported sensitive dependence on initial
condition in a three-dimensional autonomous sys-
tem of ordinary differential equations as a sim-
ple model of atmospheric convection [Lorenz, 1963;
Stewart, 2000]. Subsequently, his system has been
extensively studied with many important results
in chaotic dynamics, control and synchronization.
Although there are only three adjustable parame-
ters in his system, they comprise a huge parameter
space that has only been partially explored. In 1999,
Chen constructed a 3-D chaotic system by a simple
state feedback to the second equation in the Lorenz
system [Chen & Ueta, 1999] that combines fea-
tures of both the Lorenz attractor and the Rossler
attractor [Rossler, 1976]. Shortly thereafter, Lii and
Chen [2002] investigated another similar system by
removing the x term and changing the sign of the y
term in the g equation of the Lorenz system. Despite
its similar structure to the Lorenz system, they are
not topologically equivalent [Ueta & Chen, 2000]. In
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a sense defined by Vanééek and Celikovsky [1996],
the Lorenz system satisfies the condition aj2a2; > 0,
while the Chen system satisfies aj2a91 <0, and the
Lii system satisfies the condition aj2a2; = 0. Soon
thereafter, a so-called Lorenz system family was
constructed [Lii et al., 2002] as a connection of the
Lorenz, Lii and Chen systems by the variation of
a single real parameter. In 2001, using only pas-
sive nonlinear devices, Elwakil constructed a mod-
ified Lorenz system which is represented by three
equations with no multipliers, but it is asymmet-
rical, and its parameters are constant [Elwakil &
Kennedy, 2001]. Recently, Qi reported a new sys-
tem by adding a cross-product nonlinear term to the
first equation of the Lorenz system [Qi et al., 2005].
This system has three parameters and exhibits com-
plex dynamics and structure.

We report here two simplifications of the Lorenz
system in which the x and y terms in the § equation
are separately set to zero while retaining the chaos
with a linear trajectory through parameter space
that connects these two simple cases with the classic
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Lorenz system. It has the same features as the sys-
tem studied by Lii et al. [2002], but a simpler alge-
braic form. In particular, the adjustable parameter
occurs in only two of the terms rather than in four.
The plan of the paper is as follows. In Sec. 2, we
present the simplified Lorenz system and its basic
properties. In Sec. 3, we describe the dynamics and
bifurcations of the system. Finally, we summarize
the results and indicate future directions.

2. The Simplified Lorenz System
and its Basic Properties

We consider the Lorenz system with a single
adjustable parameter ¢ described by

& =10(y — x)

= —:L’z+(24—4c)x—|—cy. (1)
. 8z

i=ay— <

Here, c is the bifurcation parameter. The attractor
is shown in Fig. 1 for ¢ = 2.
The system (1) has the following features:

(i) It is chaotic over most of the range ¢ €
[—1.59, 7.75].

(ii) For ¢ = —1, it is the usual Lorenz system with
the standard parameters.

(iii) For ¢ = 0, the variable y is removed from the
second equation.

(iv) For ¢ = 6, the variable z is removed from the
second equation.

(v) There is a rich set of bifurcations as ¢ is varied
over the range.

(vi) According to the topological definition
by Vanééek and Celikovsky [1996], the
linearization of system (1) about the origin
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The chaotic attractor of system (1) for ¢ = 2.

Fig. 1.

produces a 3 X 3 constant matrix of partial
derivatives, A = [a;j|3x3, in which the sign
of aisao; distinguishes nonequivalent topolo-
gies. According to this criterion, aisas; > 0
when ¢ < 6, ajgas; = 0 when ¢ = 6, and
ajpaz; < 0 when ¢ > 6. Although system (1)
includes three different topologies, no special
bifurcations were observed at the critical value
of ¢ = 6. We think the connection between
topological structure and dynamics needs fur-
ther study.

Several additional important properties of sys-
tem (1) will be presented in the following sections.

2.1.

System (1) is symmetric and invariant under
the transformation (z,y,2) — (—z,—y,z), le.
reflection about the z-axis. This symmetry persists
for all values of the parameter ¢ € (—00,00). Also,
the z-axis itself is an orbit (an invariant manifold),
ie.ifx =y =0att =ty then z = y = 0 for
all t > tg. Furthermore, the trajectory on the z-axis
tends to the origin as ¢ — oo, since for such a trajec-
tory, £ = ¢y = 0 and 2 = —8z/3. Therefore, system
(1) has this symmetry and invariance for all values
of the parameter c.

Symmetry and invariance

2.2. Dzissipation and the existence
of attractor

The rate of volume contraction is given by the Lie
derivative

1dV Op;
== = =1,2
V dt ZZ: 0p;’ 23y
=z, p2=y, ¢3==2. (2)
For dynamical system (1), we obtain
1dv 0 0y 0z 3c—38
Vd or oy ez 3 @
which can be solved to yield
V(t) = V(0)e?. (4)

For ¢ < 38/3, p is negative, and the dynamical
system (1) is dissipative with solutions for t — oo
that contract at an exponential rate p onto an
attractor of zero volume that may be an equilib-
rium point, a limit cycle, or a strange attractor.



2.3. FEquilibria and stability

The equilibria of system (1) can be found by solv-
ing the three equations £ = y = 2 = 0, which
lead to 10(y —x) = 0, —xz + (24 — 4c)x + cy =
0, and zy — 8z/3 = 0. There are three equilib-
ria: Sp(0,0,0), S_(—/64 — 8¢, —/64 — 8¢, 24 — 3¢),
S1(++/64 — 8¢, +/64 — 8¢,24 — 3¢), in which two
equilibria, S_ and Sy, are symmetrically placed
with respect to the z-axis.

Linearizing system (1) about the equilibrium
So provides an eigenvalue \; = —8/3 along with
the following characteristic equation for the other
two eigenvalues:

FO) =24 (10 — )N +30c — 240 = 0.  (5)

If c € (8,10), then 10—c > 0 and 30c—240 > 0,
thus both eigenvalues of Eq. (5) are negative, i.e. the
origin equilibrium is a spiral node. For ¢ € (—o0, 8)
or ¢ € (10, 00), the solution of Eq. (5) always satis-
fies Ao > 0 > A3. Therefore, the equilibrium Sy is a
saddle point in the three-dimensional state space.

Next, linearizing the system about the other
equilibrium yields the following characteristic equa-
tion:

e (3 )2 (27232
f()\)_A+<3 c))\+(3 3>/\

+20(64 — 8c). (6)

These two equilibria S+ have the same sta-
bility characterization. Let A = 38/3 — ¢, B =
272/3-32¢/3, C' = 20(64—8¢). For ¢ € (—1.59,7.75)
or ¢ € (8,00), we have A > 0, B > 0, C' > 0 and
AxB < C. Thus Eq. (6) does not satisfy the Routh—
Hurwitz rule, and there exist a pair of complex con-
jugate eigenvalues with a positive real part. The two
equilibria Sy are spiral saddles. If ¢ € (—o0, —1.59)
or ¢ € (7.75,8), then A x B > C. Therefore, Eq. (6)
satisfies the Routh—Hurwitz rule, and thus the real
part of both complex roots is negative, and so the
two equilibria Sy are spiral nodes. The classification
of equilibria is shown in Table 1.
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3. Dynamical Behavior of the System

3.1. The Lyapunov exponent spectrum

As it is well known, the Lyapunov exponents mea-
sure the exponential rates of divergence and con-
vergence of nearby trajectories in state space, and
the Lyapunov exponent spectrum provides addi-
tional useful information about the system. The two
largest Lyapunov exponents of them are shown in
Fig. 2 [Wolf et al., 1985]. A positive and zero Lya-
punov exponent indicates chaos, two zero Lyapunov
exponents indicate a bifurcation, and a zero and a
negative Lyapunov exponent indicates periodicity
(a limit cycle).

Note that system (1) is chaotic over most of
the range ¢ € (—1.59,7.75) with some windows of
periodicity in the range ¢ € (3.5,7.75), such as
Wy = [3.507,3.509], Wy = [4.581,4.612], W3 =
[4.6911,4.722], W, = [5.122,5.127], W5 = [5.167,
5.169], Ws = [5.599,5.600], W7 = [5.7601,5.770],
Wg = [5.820, 5.830], and Wy = [6.415, 6.425]. Differ-
ent windows exhibit different periodic obits. Some
of these periodic orbits projected onto the zzplane
with different values of ¢ are shown in Fig. 3. For
application to secure communication, one should
avoid these windows.

3.2.

Whereas the Lyapunov exponent measures the aver-
age predictability of a dynamical system, the dimen-
sion of its attractor measures its complexity. A frac-
tional dimension can be defined as in [Kaplan &
Yorke, 2003]

The Kaplan—Yorke dimension

D

1
DKy:D—i—iE s 7
|>\D+1|j1 ! @)

The Kaplan—Yorke dimension of system (1) is
shown in Fig. 4. The dimension of system (1) is
larger than 2 for a strange attractor, and is 1.0 for
a limit cycle, and zero for a stable equilibrium. The
system has no stable equilibria over the range ¢ €
(—1.59,7.75).

Table 1. Classification of equilibrium points for different values of c.
Equilibria c Sign of eigenvalues Classification
s (8,10) -——= spiral node
0 (=00, 8) & (10, ) + - - saddle point (Index 1)
(—o00,—1.59) & (7.75,8) -——= spiral node
St (—1.59,7.75) ++ - spiral saddle (Index 2)
(8, 0) 4+ —— saddle point (Index 1)
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Fig. 2. The two largest Lyapunov exponents (blue and red, respectively) versus c¢: (a) ¢ € (—2,8), (b) ¢ € (4,8) (Time step:
0.01, Initial condition: (0, —0.01, 9), Iterations: 800 000).
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Fig. 3. Periodic orbits of system (1) projected onto the zzplane for different values of ¢: (a) ¢ = 3.509, (b) ¢ = 4.590,
(c) ¢ = 4.701, (d) ¢ = 5.124, (e) ¢ = 5.169, (f) ¢ = 5.600, (g) ¢ = 5.770, (h) ¢ = 5.828, (i) ¢ = 6.42.
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Fig. 4. The Kaplan—Yorke dimension of system (1).

3.3. Routes to chaos

The range of dynamical behaviors is shown by the
bifurcation diagram in Fig. 5 in which successive
values of x.x are plotted at each value of c. The
band structure indicates chaos, which disappears as
¢ increases. On the other hand, the transition from
chaos is apparently different at the two extremes of
c. All of the dynamics are summarized in Table 2,
and the detailed analysis will be presented in fol-
lowing sections.
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Xmax

Fig. 5.

The bifurcation diagram of xmax versus c.

3.3.1.  From transient chaos, boundary

crisis, hysteresis and Hopf
bifurcation to chaos

When c increases from —oo to —1.6499, there exist
two stable equilibria and an unstable equilibrium in
system (1). The trajectory wanders in the vicinity
of the saddle point at the origin, exhibiting tran-
sient chaos. For example, the solution of (1) for
¢ = —1.8 exhibits a transient chaotic behavior as
shown in Fig. 6(a) which suddenly switches to a

Table 2. Route to chaos in Eq. (1).
c LE Dimension Dynamics

(—o0, —1.6499) ——— 0 Transient chaos
—1.6499 + 0 — > 2 Boundary crisis
(—1.6499, —1.5903) + 0 — 1, >2 Multiple coexisting attractors, hysteresis
—1.5903 00— Subcritical Hopf bifurcation
(—1.5903, 6.44) +0 - > 2 Chaos (with periodic windows)
(6.45, 6.79) 0—— 1 Limit cycles
6.60 00— 1 Pitchfork bifurcation
(6.60, 6.46) 00— 1 Limit cycles
6.46 00— 1 Period-doubling bifurcation
(6.46, 6.80) 00— 1 Limit cycles
(6.80, 7.054) + 0 — > 2 Chaos
7.054 0— — Homoclinic bifurcation
(7.054,7.6792) 00— 1 Limit cycles
7.6792 0—-— 1 Two Limit circles merging
(7.6792, 7.7567) 00— 1 Limit cycles
7.7567 00— Supercritical Hopf bifurcation
(7.7567, 8) - —— 0 Two stable equilibria
8 0—- - 0 Pitchfork bifurcation
(8,10) -——= 0 One stable equilibrium
10 00— Subcritical Hopf bifurcation

(10, 00)

Unbounded orbits
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Fig. 6.
tion of transient chaos in system (1).

pattern of oscillation that decays to the equilib-
rium x = /64 — 8c. On the average, chaotic behav-
ior switches to damped behavior after about 130
oscillations. For larger ¢ < ¢p =~ —1.6499, chaotic
behavior persists longer. Similar behavior has been
reported for the standard Lorenz system [Yorke &
Yorke, 1979]. By a numerical experiment with 400
point average for each value of ¢, we find the scal-
ing for the duration of the chaotic transient () as a
function of ¢ as shown in Fig. 6(b). Nonlinear regres-
sion of the seven data points leads to the result

In(7) = —3.51311n(cp — ¢) — a, (8)

where ¢g = —1.6499, a = 0.4084. The transient
chaos is especially long-lived (superpersistent) when
c is close to ¢y, and has been observed in coupled
chaotic electrical oscillators [Zhu et al., 2001].

At ¢ = —1.6499, the system undergoes a bound-
ary crisis when the strange attractor collides with
the basin of attraction separating it from the two
attracting equilibrium points. After the crisis, the
strange attractor coexists with the two stable equi-
libria for ¢ € (—1.6499, —1.5903), and the system
exhibits hysteresis, in which the bifurcation occurs
at different values of the parameter depending on
the direction in which it is changed.

At ¢ = —1.5903, the stable equilibria Sy
become unstable spiral saddles with index 2 (the
index is the dimension of the unstable manifold).
The eigenvalues, which are a complex conjugate
pair, cross the imaginary axis, and the oscillation
changes from decay to growth in a subcritical Hopf
bifurcation, leaving only the one chaotic attractor.

18
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14

In(T)

10

-5 -4 -3 -2
In(co-c)

(b)

Transient chaotic behavior in system (1). (a) Transient chaos for ¢ = —1.80, IC: (10.0846, 4.6516, 36.5640); (b) Dura-

3.3.2.  From limit cycle, pitchfork and
homoclinic bifurcation to chaos

Consider now the dynamics when ¢ decreases from
+00. The equilibrium at the origin has one eigen-
value of —2.6667, and the other two eigenvalues
satisfy Eq. (5). According to the Hopf bifurcation
theorem [Casti, 2000], there is a Hopf bifurcation at
¢ = 10. The origin is globally stable for ¢ € (8,10).
At ¢ = 8, the origin loses stability by a supercrit-
ical pitchfork bifurcation and a symmetric pair of
attracting fixed points are born. At ¢ = 7.7567, the
eigenvalues, which are a complex conjugate pair,
cross the imaginary axis at a supercritical Hopf
bifurcation where a pair of coexisting stable limit
cycles are born. The dimension of the attractors
changes from zero (a point) to one (a closed loop),
and the first Lyapunov exponent is zero and the
second Lyapunov exponent is negative.

For ¢ decreasing from this point, the two coex-
isting unstable limit cycles expand as shown in
Figs. 7(a) and 7(b) and then merge at ¢ = 7.6792
as shown in Fig. 7(c). The merged limit cycle grows
with decreasing ¢ as shown in Fig. 7(d). When ¢
decreases further, a pitchfork bifurcation appears
at ¢ = 7.075 where the attractor splits into two as
shown in Fig. 7(e). Then one circle of the attractor
grows while the other circle shrinks with decreasing
¢ as shown in Fig. 7(f). At ¢ = 7.054, the cycles
touch the saddle point and become homoclinic
orbits, and hence we have a homoclinic bifurcation
and the onset of chaos as shown in Fig. 7(g). At
that point, the largest Lyapunov exponent switches
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State space plots for different ¢ (blue and red attractors correspond to two symmetrical initial conditions): (a) ¢ = 7.73,
(b) ¢=17.69, (¢c) ¢ ="7.6792, (d) ¢ = 7.2, (¢) c=7.075, (f) ¢ ="7.06, (g) ¢ = 7.05.
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(b) ¢ =6.46, (c) ¢ = 6.442, (d) c = 6.44.
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from zero to positive, while the second Lyapunov
exponent switches from negative to zero, and the
dimension changes from one to a value slightly in
excess of two.

3.3.3.  Behaviors in the periodic windows

In certain ranges of ¢, there are periodic win-
dows, including large ones at ¢ € (6.44,6.80) and
¢ € (6.13,6.35) where dynamics similar to that
described above occur. For example, in the window
at ¢ € (6.44,6.80), a pitchfork bifurcation occurs at
¢ = 6.60 where two coexisting stable limit cycles
are born as shown in Fig. 8(a). For ¢ € (6.80,6.47),
there are two periodic attractors, each of which
is composed of two single circles separated at the
bottom. As ¢ decreases, the periodic orbit changes
through a period-doubling bifurcation at ¢ = 6.46
as shown in Fig. 8(b). At ¢ = 6.442, the outside
circle doubles again as shown in Fig. 8(c). Finally,
it gives way to chaos by homoclinic bifurcation at
c = 6.44, and the coexisting state disappears as
shown in Fig. 8(d). Hence the route to chaos in this
window is complex, including a pitchfork bifurca-
tion, period-doubling bifurcations and a homoclinic
bifurcation.

4. Conclusion

This paper has reported and analyzed a variant of
the Lorenz system in which one parameter is varied.
Two values of that parameter (¢ = 0 and ¢ = 6)
correspond, respectively, to simplifications of the
Lorenz system in which one or the other of the lin-
ear terms in the y equation is set to zero, and a third
value (¢ = —1) corresponds to the standard Lorenz
system. The dynamical properties of this chaotic
system have been analyzed, including the Lyapunov
exponents, fractal dimension and routes to chaos.
The results show it displays abundant and complex
dynamics. There are additional interesting features
of this system in terms of control, synchronization,

circuit implementation and its application to secure
communications that deserve further study.
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