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This paper reports the finding of a 3-scroll chaotic attractor with only three equilibria obtained
via direct modification of Chua’s cireuit. In addition, it is shown numerically that the new system
can also generate one-scroll and two-scroll chaotic attractors.
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1. Introduction

Chaos is the idea that a system will produce
very different long-term behaviors when the ini-
tial conditions are perturbed only slightly. Piecewise
linear chaoctic systems, for example [Altman, 1993;
Chua et al., 1986; Aziz-Alaoui, 1999; Sprott, 2000;
Zeraoulia, 2006, 2007], are used to construct simple
electronic circuits with applications in electronic
engineering, especially in secure comimunications
[Kal’yanov, 2003; Karadzinov et al., 1996; Mahla &
Palhares, 1993]. Circuits also provide a very useful
vehicle for. studying chaos as well as easy applica-
tions. Chua’s circuit [Chua et al., 1986] is one of the
most interesting examples of chaos in circuit the-
ory. This circuit consists of an inductor, two capac-
itors, and a nonlinear resistor, all in parallel, and a
controlled resistor in series between the two capac-
itors as shown in Fig. 1. This circuit is structurally
the simplest and dynamically the most complex
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member of Chua’s circuit family [Chua et al., 1986].
Chua’s circuit is given by the following closed-form
dimensionless equations:

7' =aly — f(z)),

Y=z —y-+z, (1)
Z = _ﬁy:
where o and [ are constant parameters and
1
f(@) =mz+5(mo —ma)(jo +1] = [z —1))  (2)

is the characteristic function of system (1)—(2), with
mg, m the slopes of the outer and the inner regions.
System (1)-(2) gives a chaotic attractor called the
double-scroll attractor [Chua et al., 1986]. The orig-
inal piecewise-linear characteristic of Chua’s equa-
tion has been generalized by many researchers using
various different forms for the nonlinearity. For
example, the original piecewise-linear function can
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Fig. 1. (a) A circuit diagram for Chua’s oscillator. (b) Typical i—v characteristics of Chua’s diode. {c) Circuit realization

scheme [Billota et al., 2007a).

be replaced by a discontinuous function [Khibnik
et al., 1993; Lamarque et al., 1999], a C* “sigmoid
function” [Mahla & Palhares, 1993], a cubic poly-
nomial coz®-+c1z [Altman, 1993; Hartley & Mossay-
bei, 1993; Khibnik et al, 1993], or an “abs’
nonlinearity z|z| [Tang et al., 2003].

In fact, the piecewise-linear (PWL) continuous
chaotic systems can also generate various attrac-
tors, even the more complex multiscroll attrac-
tors. For PWL continuous systems and multiscroll
attractors, there are many works including the gen-
eration and circuit design for multiscroll chaotic
attractors [Li et al, 2004, 2006]. Indeed, a fam-
ily of n-scroll chaotic attractors was introduced by
Suykens and Vandewalle in [1993]. Chaotic attrac-
tors with multiple-merged basins of attraction were
studied by Lii et al. in [2003] using a switching

manifold approach. In [Yalcin et al., 2002] a family
of scroll grid attractors was presented using a step
function approach including one-dimensional (1-D)
n-scroll, two-dimensional (2-D) (n x m)-grid scroll,
and three-dimensional (3-D) {n X m x [)-grid scroll
chaotic attractors. In [Li et al., 2004a, 2004b, 2006],
Li et al. proposed with rigorous theoretical proofs
and experimental verification the hysteresis series
and saturated series methods for generating 1-D
n-scroll, 2-D (nxm)-grid scroll, and 3-D (nxmxI)-
grid scroll chactic attractors. In [Yu et al., 2008,
2009], Yu et al. generated 2n-wing and n x m~wing
Lorenz-like attractors from a Lorenz-like system
and a modified Shimizu-Morioka model, respec-
tively. Finally, using a thresholding approach, Lii
et al. generated multiscroll chaotic attractors [Li
et al., 2008].



One of the basic properties of multiscroll
attractors is that they surround a large number
of equilibrium points. In this paper, we report the
finding of a three-scroll chaotic attractor but with
only three equilibria rather than more as in the
usual case where this attractor requires at least
five equilibria [Aziz-Alaoui, 1999, and references
therein|. In addition, it is shown numerically that
the new system (3)—(4) below can generate the clas-
sical cne-scroll and two-seroll chactic attractors.

This paper is organized as follows. In the fol-
lowing section, we discuss the model, and then we
give several basic properties including equilibrium
points and their stability in order to characterize
the three-scroll chaotic attractor. Some numerical
simulations confirming the theory are given and
discussed in Sec. 3. The final section gives some
conclusions.

2. The Proposed Model

In this paper, a new piecewise-linear version of
Chua’s circuit (1)-(2) is proposed where we replace
the characteristic function (2) by a piecewise-linear
function (in the z, z variables) given by:

f{z),
""f(z):

where a is a positive parameter. The proposed func-
tion has the advantage that it has two variables
z and z and it has not been previously proposed
or studied. Note that hy(z, 2} is an odd-symmetric
discontinuous function (except for & = 0 or a =
my —mo/m1). A 3-D graph of Eq. (3) is shown in
Fig. 2. Hence, the new system is given by:

2] > a,
(2| <a,

ha(ﬂj, Z) = { (3)

o' = aly — ha(xa z))
Y=z-y+z (4)

Suppose that mg < 0 and m; > 0. Then
one has a new continuous-time, three-dimensional,
autonomous, piecewise-linear system. We have dis-
covered that the new model (3)—(4) generates
various chactic attractors including the classi-
cal 1-scroll, double-scroll, and three-scroll chaotic
abtractors. The equation (3)—(4) is piecewise-linear,
which simplifies its circuitry realization. This fact
is very important because many works have been
devoted to building simple electronic chaotic cir-
cuits with piecewise-linear functions [Chua & Lin,
1990; Altman, 1993: Hartley & Mossaybei, 1993;
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Fig. 2. A 3-D graph of Eq. (3) for mg = —0.43, m; = 0.41
and a = 1.0.

Karadzinov et al., 1996; Aziz-Alaoui, 1999; Sprott,
2000]. This situation is quite interesting both the-
oretically and practically in terms of new chaos
generation techniques and possible engineering
applications of chaos.

We remark that limg_.¢ ho(z,2) = f(z), and
so it is possible to conclude that the dynamics of
system (3)—(4) is very close to the original Chua’s
circuit (1)-(2) when the bifurcation parameter a is
“close to zero. This result is confirmed numerically
in Sec. 3. For a < 0, one has h,{z,2) = f(z), and so-
systems (1)—(2) and (3)-(4) are identical. Notably,
the system (3)-(4) is not diffeomorphic with the
Chua’s system (1)-(2) (the two systems are not
topologically equivalent) since the system (3)-(4)
has nine linear regions with respect to = and z, but
the latter has only three regions with respect to the
z variable. Dynamically, it is clear that the two sys-
tems do not have the same sequence of bifurcations
as will be shown in Sec. 3.

The new chaotic system (3)—(4) has sev-
eral important properties in common with Chua’s .
attractor, but there are some differences between
them. It has a natural symmetry under the coor-
dinate transformation (z,y,z) — (—z,—y,—z),
which persists for all values of the system parame-
ters. The divergence of the flow for system (3)—(4)
is given by:

gz’ Yy 0
Wt o
—am -1, |z|=a
= { (5)
am—1, |z <e, _




138 Z. Elhadj & J. C. Sproft
where
2] > 1

{mla

m= .

My, ]Q}" <1

Thus if a > max(1/mg,—(1/ma)), then the sys-
tem (3)-{4) has a bounded, globally attracting w-
limit set, and it is dissipative just like Chua’s sys-
tem (1)-(2). The variation of the volume V(¢) of
a small element &2(f) = éxdydz is determined by
the divergence given in Eq. (5), and in this case the
exponential contraction rate is

m@:{

Hence, a volume element Vj is contracted in time ¢
by the flow into a volume element V5 exp((VV)t).
Then each volume containing the system trajectory
shrinks to zeroc as t — +oo. Thus, all system orbits
will be confined to a specific subset having zero vol-
ume, and the asymptotic motion converges onto an
attractor. This result has been confirmed by numer-
ical simulations in Sec. 3.

|z] > a
|zl <a

exp(—am — 1),

explam — 1),

2.1. Egquilibrium points and their
stability

In this section, we suppose that & > 0 and g >
0. Due to the shape of the vector field of system
(3)—(4), the phase space can be divided into two
principal linear regions denoted by Ry and Rp:

Ry = {(z,y,2) €R®: |2| < a} (6)
Ro = {(z,y,2) € R®: |2| > a}, (7)
in wﬂich Ryis itself divided into three linear r;agions:
0 ={(z,y,2) eR¥: 2 > 1,]2|] <a}
Qg ={(z,y,2) eR¥: |z} < 1,]z]| <a} (8)
Q3 ={(z,y,2) eR¥: 2 < —1,|2| <a},

and R» is divided into six linear regions:

(Qu={(z,y,2) eR®:2>1,2>a}

Q= {(z,9,2) ER¥: |z| < 1,2 > a}

O ={(z,9,2) ER3 13 < —1,2> a} o)
97:{($:Q,Z)ER3:m21,z5_a} y
Qs ={(z,9,2) eR¥: |[z| < 1,2 < —a}

Qg ={(z,y,2) eR3: 2 < -1,z < —a}.

Thus, the system (3)-(4) has nine piecewise-
linear regions with respect to the variables = and z,
which confirm that this system is topologically dif-
ferent from the original Chua’s circuit as mentioned

above. In this case, all equilibrium points of sys-
tem (3)-(4) are given by Xeqe) = (2,0, —z) where
z is the solution of the equation hq(z,—z) = 0.
Thus, one has the following two cases: First, if
a < 1 — {mp/ma), then there exist three equilib-
rinm points for the system (3)—(4) as follows:

(o) 0 (25)

and P% =(0,0,0),

such that PT € Qg, P~ € Q7 and P° € )y as
shown in Fig. 3, and the Jacobian matrix evaluated
at these equilibria is given as follows:

For P* one has:

—am; «a 0
JE = T -1 1], (11)
0 -5 0
and for P° one has:
—amg o O
A= 1 -1 1 (12)
0 -5 0

Second, if @ > 1 — (mg/m1), then only P° €
exists (so no equilibrium is in Ry).

The Jacobian matrix evaluated at P°, is
given by

J=] 1 -11 (13)
0 -8 0
aSl—%
21 P+EQG Qs 94
, 01 POecq, i
............................................ z = —q
24 Qg Qg P~ ey
: *
2 z=-10 gz=1 2
X

Fig. 3. Equilibria of system (3)—(4).
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The eigenvaiues are the solutions of the following
characteristic cubic equation:

P =X+ AN +BA+C=0, (14)

where the values of A, B, and C are determined for
each equilibrium point as follows:
For P* one has in the first case that:

A =am +1
By =8+ a(my 1) (15)
Ch = afm;.
For P° one has in the first case
Ay =amp+1
By=—a+ 3+ amg (16)
Co = affmy,
and in the second case one has
Ag=—amp+1
By =8+ a(—-mg—1) %))
Co = —afmg.
It is easy to show that in the first case one has:
CoCy < 0. (18)

Then P° and P* have different topological types:
P* is always unstable since €} is negative, and
therefore one eigenvalue of the Jacobian matrix J*
is real and positive. Also, note that the two equi-
librium points P* have the same Jacobian matrix,
and thus the two equilibria have the same type of
stability in the first case. The exact value of the
eigenvalues is obtained by using the Cardan method
for solving a cubic equation. On the other hand,

- x 1

(a)
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the Routh—-Hurwitz conditions lead to the conclu-
sion that the real parts of the roots A (solution of
(14)) are negative if and only if A > 0, C > 0, and
AB — C > 0. Thus in the first case, PT are stable
if and only if:

B> (1—mi)a(l +ma) (19)

since we assume that my > 0,a > 0, and 8 > 0,
and in the second case PU is stable if and only if:

8 > a(l +mg)(1 — amg). (20)

3. Numerical Simulations

In this section, the dynamical behaviors of the
system (3)—(4) are investigated numerically where
we use an appropriate Poincaré section (value of
z at y = 0) where the resulting points {yn}nen
are computed using the Hénon method [Parker &
Chua, 1989], and a set of one of them is recorded
after transients have decayed and plotted wversus
the desired parameter. The calculations of limit
sets of the system (3)-(4) were performed using
a fourth-order Runge-Kutta algorithm [Parker &
Chua, 1989]. Then to determine the long-time beha-
vior and chaotic regions, we numerically computed
the largest Lyapunov exponent [Parker & Chua,
1989].

Chaotic behavior implies sensitive dependence.
on initial conditions with at least one positive
Lyapunov exponent. While many algorithms for
calculating the Lyapunov exponents would give
spurious results for piecewise-linear discontinu-
ous systems, the algorithm used here and given
in [Sprott, 2003] works for such cases since the

100 Z00 30D 400

(b)

Fig. 4. () Projection onto the z—2 plane of a l-scroll chaotic attractor for & = 7.0, 8 = 14.0,a = 1L.0. (b) Time waveform of

the time series z(t).
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Fig. 5. (&) Projection onto the z—# plane of a double-scroll chactic attractor for & = 10.0,8 = 14.0,a = 0.1. {b) Time
waveform of the time series z(2).
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Fig. 6. (a) Projection onto the z—y plane of a 3-scroll chaotic attractor for o = 10,0, § = 14.0,4 = 1. (b) Time waveform of
the time series 2(t).
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Fig. 7. Projection onto the 2z plane of the 3-scroll chactic attractor obtained for: a = 10.0,8 = 14,a = 1. (b) Time
waveform of the time series y(¢).
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Fig. 8. Projection onto the y—z plane of the 3-scroll chaotic attractor obtained for: @ = 10.0,8 = 14,a = 1. (b) Time

waveform of the time series z().

Lyapunov exponent plots shown in Figs. 9(a)
and 10(a) below and the bifurcation diagrams
given in Figs. 9(b) and 10(b) seem to agree.
The method essentially takes a numerical deriva-
tive and gives the correct result provided care is
taken to ensure that the perturbed and unper-
turbed orbits lie on the same side of the dis-
continuity. This may require an occasional small
perturbation into a region that is not strictly
accessible to the orbit. Still a question arises
about the exact value of the positive Lyapunov
exponents.

In all these numerical methods, the data are
calculated in double precision. Thus for e« = 10.0,
8 = 14.0,myg = —0.43,m; = 0.41, and ¢ = 1.0,
the system {3)-(4) has the 3-scroll chaotic attractor
shown in Figs. 6(a), 7(a) and 8(a) with the wave-
forms of the time series z(t}, y(t), 2(t) shown respec-
tively in Figs. 6(b), 7(b) and 8(b).

The attractor shown in Figs. 6-8 resembles
the so-called three-scroll chaotic attractor, but with
only three equilibria, contrary in the usual case
where this atiractor requires at least five equilib-
ria [Aziz-Alaoui, 1999)].

Figures 9{a), 10(a), and 11(a) show the bifur-
cation diagrams of the variable y, plotted ver-
sus control parameters o € [0,11.0], with g =
14.0,8 € [0,40.0], with o = 10.0, and @ € [0,4.0],
and with & = 10.0,8 = 14.0, respectively. In all
these cases, the chaotic attractors are obtained via
a border collision bifurcation scenario from a sta-
ble period-2 orbit. On the other hand, Figs. 9(b},
10(b) and 11(b) show the variations of the largest

O

Fig. 9. (a) Bifurcation diagram of the variable y. plotted
versus control parameter o € [0,11] with a = 1,8 = 14,
(b) Variations of the largest Lyapunov expenent of the sys-
tem (3)—(4) versus the parameter o € [0,11] with a = 1,
B =14.
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Fig. 10. (a) Bifurcation diagram of the variable yn plotted

versus control parameter § € [0,40] with ¢ = 1,a = 10.
(b) Variations of the largest Lyapunov exponent of the sys-
tem (3)—(4) versus the parameter 8 € [0,40] with @ = 1,
a = 10.

Lyapunov exponent of the system (3)-(4) versus
the parameter o € [0,11.0] with 8 = 14.0,8 €
[0,40.0], with @ = 10.0 and o € {0,4.0], and with
a = 10.0,F = 14.0, respectively, where positive
largest Lyapunov exponent (LLE) indicates chaotic
behavior.

The dynamical behaviors of the system (3)-
(4) are investigated numerically. Fix parameters
B = 140,a = 1.0, and let ¢ > 0 vary. The sys-
tem (3)—(4) exhibits the following dynamical behav-
iors: When 0 < o < 6.44, the system converges
to an equilibrium point. When 644 < o < 6.5,
the system converges to a stable period-2 orbit.
When 6.5 < o < 7.62, the system converges to
a 1-scroll chaotic attractor as shown in Fig. 4{a)

0 1 2 3 a4-
(a)
0.8 ' l
04
LE
-04 L
-0.8 1 I
0 1 2
(b)
Fig. 11. {(a) Bifurcation diagram of the variable y» plotted

versus control parameter @ € [0,4] with o = 10,8 = 14.
(b) Variations of the largest Lyapunov exponent of the sys-
tem (3)—(4) versus the parameter a € [0,4] with a = 10,
8 =14,

with the time waveform of z(t) shown in Fig. 4(b).
When o > 7.62, the system converges to the 3-scroll
chaotic attractor as shown in Figs. 6-8.

On the other hand, fix parameters o = 10.0
and a = 1.0, and let 3 > 0 vary. The system
(3)—(4) exhibits the following reverse (to the one
with respect to &) dynamical behaviors: When 0 <
8 < 8.0, the system converges to a periodic orbit.
When 8.0 < 8 < 20.57, the system converges to the
3-scroll chaotic attractor. When 20.57 < 8 < 29.97,
the system (3)—(4) converges to a l-scroll chaotic
attractor. When 29.97 < g < 31, there is a limit
cycle. When 4 > 31.0, the system converges to
an equilibrium point. For &« = 10.0, 8 = 14.0, and
0 < a < 4.0 varies, the system (3)—(4) is chaotic



and displays both the l-scroll and 3-scroll chaotic
attractors until o is in a small neighborhood of
a = 3.0 where the system converges to a periodic
orbit.

Note that all 3-scroll chaotic attractors appear
when a < 2.0488 because the system (3)—(4) has
three equilibria, but for o > 2.0488, the system
(3)-(4) has at most one-scroll chaotic attractors
because it has only one equilibrium point. On the
other hand, cne can observe that the so-called
double-scroll can occur for some small values of
a, for example for 0 < & < 0.17 as shown in
Fig. 5(a) with the time waveform of z(¢) shown in
Fig. 5(h).

4. Conclusion

In this work we demonstrated numerically the exis-
tence of a 3-scroll chaotic attractor with three equi-
libria obtained from direct modification of Chua’s
equation. The new system (3)—(4) has some proper-
ties similar to the original Chua’s system and other
well-known modified Chua’s systems. Some detailed
analysis of the dynamics of this system was also
presented.
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