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Simple driven chaotic oscillators with complex variables
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Despite a search, no chaotic driven complex-variable oscillators of the form z+f(z)=¢"¥ or z

+f(z)=€"" are found, where f is a polynomial with real coefficients. It is shown that, for analytic
functions f(z), driven complex-variable oscillators of the form z+f(z)=¢* cannot have chaotic
solutions. Seven simple driven chaotic oscillators of the form 7+ f(z,7)=e"* with polynomial f(z,7)
are given. Their chaotic attractors are displayed, and Lyapunov spectra are calculated. Attractors for
two of the cases have symmetry across the x=—y line. The systems’ behavior with () as a control
parameter in the range of 1=0.1-2.0 is examined, revealing cases of period doubling, intermit-
tency, chaotic transients, and period adding as routes to chaos. Numerous cases of coexisting

attractors are also observed. © 2009 American Institute of Physics. [DOI: 10.1063/1.3080193]

It has become widely recognized that mathematically
simple nonlinear systems can exhibit chaotic behavior. A
logical question to ask is “How simple can a system be
and still exhibit chaos?”” Much of the work to date on this
question has been on systems with real variables. This
work asks the question for driven oscillators with com-
plex variables. After a brief mathematical look at such
systems, a search for simple examples is conducted. Seven
systems found in the search are examined as to the degree
of chaos present, i.e., the size of the largest Lyapunov
exponent. The question of how these systems move into
chaos, as a function of the driving frequency, is also
investigated.

I. INTRODUCTION

Chaotic systems of equations with real variables have
been and continue to be studied extensively,l_5 but the study
of chaotic systems with complex variables is a more recent
pursuit. There have been numerous theoretical studies, par-
ticularly involving nonlinear oscillators, often with periodic
forcing.é’10 These systems have wide applications in physics,
in areas as diverse as fluids, quantum mechanics, supercon-
ductivity, plasma physics, optical systems, astrophysics, and
high-energy accelerators.>!'™13

Motivated by this more recent trend in research, and in
line with previous work searching for simple systems of a
given form that exhibit chaotic behavior,'" this work be-
gan with a search for simple driven chaotic oscillators with a
complex variable z, of the form z+f(z)=¢'¥. This form is
equivalent, with z=x+iy and f(z)=u(x,y)+iv(x,y), where u
and v are real functions, to the driven two-dimensional
system,

x=—u(x,y) + cos Qr,

(1)
y=—v(x,y) +sin Qr,

which can be recast as the autonomous three-dimensional
system,
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X =-ul(x,y) + cos Qt,
y=-uv(x,y) +sin Qr, (2)

i=1.

There are numerous examples of driven two-dimensional
systems that exhibit chaotic behavior.”

In Sec. II, some preliminary theoretical and experimental
observations indicate why the search was expanded to sys-
tems with functions of the form f(z,z). In Secs. III and 1V,
seven simple quadratic and cubic chaotic polynomial sys-
tems with real coefficients are examined, along with their
behavior when () is used as a control parameter, including
routes to chaos. Section V is a brief summary.

Il. PRELIMINARY OBSERVATIONS

Excluding complex conjugates z most simple complex
functions of z are differentiable by z except at isolated points,
and so are analytic. Analytic functions obey the Cauchy—
Riemann equations, du/dx=dv/dy and du/dy=—dv/dx.

The Jacobian of system (2), assuming analytic f(z) and
using the Cauchy—Riemann equations, is

du Jdu
—— —— —=Qsin Q¢
ox dy
J= Jv dv
-—— —— Qcos Ot
ox dy
0 0 0
Jdu u
—— —— —=Qsin Ot
ax dy
=| Jdu u 3
— —— Qcos Or 3
dy ox
0 0 0

which has eigenvalues 0 and —du/dx*idu/dy. The
Lyapunov exponents (which measure the exponential rates of
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separation of two nearby trajectories, and thus the degree of
chaos) are the averages of the real parts of these eigenvalues
along the trajectory: 0, (—du/dx), and (—du/dx). If the latter
were both positive, nearby trajectories would separate expo-
nentially in two directions, and so would have to be un-
bounded. Thus for bounded trajectories, any nonzero
Lyapunov exponents must be negative: Nearby trajectories
approach each other exponentially in two directions. The sig-
nature of chaos 1is sensitive dependence on initial
conditions—nearby trajectories separating exponentially—so
there can be no chaotic behavior for systems of the form 7
+f(z)=€"Y, where f is analytic.

A simple way to alter the situation is to introduce the
variable Z=x—iy. For a function f(Z), where f(z) is analytic,
the signs of the Cauchy—Riemann equations are reversed.
The Jacobian becomes

du u
—— —— —Qsin Q¢
ox dy
J= Jv Jdv
—— —— cos Ot
ox dy
0 0 0
1% J
_d A Q sin Ot
ox dy
= Ju Jdu . 4
-— — Qcos Ot “)
dy  dx
0 0 0

Thus for systems 7+ f(7)=e™Y, the trace of the Jacobian is
zero, i.e., they are area preserving, like Hamiltonian (roughly
speaking, energy conserving) systems. A set of initial condi-
tion points (xy, yo) may change its shape, but the set will
maintain its original area over time. However, for nonlinear
f(2), these systems cannot be Hamiltonian in the sense of
having a mechanical analog because if x=y, the reversed-
sign Cauchy-Riemann equations mandate a linear system,
the harmonic oscillator.

While we have not shown that systems of the form z
+f(2) =€ cannot be chaotic, the observed behavior for
polynomial f(Z) with real coefficients is that most trajectories
diverge. In a few cases, there are stable limit cycles (the
trajectory repeatedly cycles around a fixed, closed path) or
tori (the trajectory remains on the surface of a torus). In two
cases, a Poincaré section (a plot of y versus x at a chosen
phase of the drive cycle, over many cycles), shows the torus
breaking up into island chains for some values of (), as is
commonly observed for a Hamiltonian system. With further
changes in (), reduction in these cases, the trajectory begins
to form a chaotic sea, but soon diverges. The basins of at-
traction (sets of initial conditions that end up on the attractor)
are quite small, and it is the outermost of the nested tori that
breaks up. With no stable, surrounding torus (a so-called
KAM torus), there is no containment for the trajectory—it
soon wanders outside the basin and diverges.

Given that analytic functions of z cannot produce chaos,
and having found no polynomial functions of 7 with real
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coefficients that produce chaos, polynomial functions of the
two variables z and z with real coefficients were introduced.
Two obvious choices, functions of (z+z)/2 and (z—2)/2i,
i.e., of x and y separately, were avoided because much work
has already been done on finding simple examples of such
systemslG*20 and because of the decision to restrict the search
to polynomials with real coefficients.

lll. QUADRATIC SYSTEMS

A search was conducted for the simplest chaotic qua-
dratic polynomial f(z,Z) with real coefficients that displays
chaotic behavior. The most general such quadratic function is

f(Z,Z_) =ag+az+ a2Z2 + Cl3ZZ+ a4Z_+ a522. (5)

The search assigned random coefficients a; and used random
initial conditions. The random values were taken from the
squared values of a Gaussian normal distribution with mean
zero and variance of 1, with the original signs of the values
restored after squaring. For (), uniformly distributed random
numbers between 0.1 and 2.0 were used. During the search,
trajectories were followed using a fixed-step fourth-order
Runge—Kutta integrator.21 When a chaotic system was iden-
tified, an effort was made to simplify its coefficients a; while
retaining its chaotic behavior. The largest Lyapunov expo-
nent was calculated using the method detailed in Ref. 5;
there must also be a zero exponent, allowing the third to be
obtained from the trace of the Jacobian.’

The three simplest chaotic quadratic systems (Lyapunov
exponents for (=1 in braces) our search method discovered
were

i+22 -7+ 1= {0.0473,0,— 0.9869}, (6)
i+ (z-Dz+ 1= {0.0641,0,—0.2031}, (7)
i+222 -2 +2=¢"" {0.0803,0,— 0.0805}. (8)

The behavior of these systems with () as a control parameter
was investigated; initial conditions for each system were
kept constant at (zg,%,)=(—0.5i,0). The investigation was
conducted with a Cash-Karp adaptive-step fourth-order
Runge—Kutta integrator,21 which avoided numerical trajec-
tory divergences observed with the fixed-step integrator in
association with occasional large excursions from the chaotic
attractors. Some of the changes in the attractors occurred
with very small changes in (), so quite likely there are more
to be discovered than those listed here.

A. System (6)

The attractor for system (6) is shown in Fig. 1. As () is
reduced below 0.6, there is a limit cycle that adds a loop
above the x-axis, then below, and so on, down to at least
0=0.05, where there are 26 loops, 13 above and 13 below.
This phenomenon has been called period adding;22 the limit
cycle’s overall period increases by one initial period at a
time. If started from zy=-0.5i, system (6) diverges at
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FIG. 1. Attractor for system (6).

0=0.54, where a loop grows to infinite size as it flips from
positive to negative y values.

From 0.6 to 0.85, there is a figure-8 shaped limit cycle
similar to the figure-8 shaped strange attractor of Fig. 1. As
Q) is increased from 0.85, the limit cycle period doubles (the
limit cycle’s period doubles repeatedly) three times to period
8 at 0.955, and then returns to period-4 before going chaotic
near 0.959. The transition to chaos takes place by means of
lengthening chaotic transients.

Chaos continues until {1=1.023, where the system pro-
duces a period-5 figure-8 limit cycle. This cycle period
doubles to a narrow chaotic window in €} values at 1.034. It
reforms at 1.036, as a period-6 cycle, so the overall transition
has been period adding. The sequence of period doubling to
chaos followed by period adding continues, up to period 14
at 1.059, which then period doubles to a window of weak,
intermittent chaos.

Increasing () further, intermittent periodic intervals
lengthen, and then resolve into a limit cycle just above 1.064.
This cycle, a single loop above the x-axis, grows ever larger
with increasing () finally diverging at (1=1.88. Above 1.88,
the loop returns, now below the x-axis, as observed at ()
=0.54. The loop shrinks with further increase in () at least as
far as 1=2.3.

B. System (7)

The attractor for system (7) is displayed in Fig. 2. For
0=0.1 upward, there is a limit cycle with varying-length
chaotic transients. Competition between a torus and a limit
cycle can be seen in some regions of {)-space. Near 0.25, the
torus prevails; but by 0.252, the limit cycle wins. At 0.253,
there is an intermittent period-2 cycle with a pair of sub-
cycles that separate into chaos. However, by 0.255, the sub-
cycles come together into a period-1.
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FIG. 2. Attractor for system (7).

This sort of mix repeats in the intervals from 0.355 to
0.375, 0.45 to 0.49, 0.61 to 0.70, 0.82 to 0.85, and 0.89 to
0.92, with period-1 limit cycles in between. In some inter-
vals, there are places where stable cycles either appear for
certain () or form from the separating 2-cycle. With aslightly
smaller ), there may be a weakly chaotic torus modeled on
the 2-cycle. In Poincaré sections, the tori often appear as
groups or chains of islands.

The interval between 0.89 and 0.92 differs from the oth-
ers in two ways: A change in initial conditions suffices to
recover the limit cycle; and coming out of the interval, a
chaotic transient leads directly to the period-1 cycle, without
intermittency. Above 0.92, the limit cycle becomes increas-
ingly complex, finally period doubling between 0.954 and
0.955 to the chaotic attractor depicted in Fig. 2.

The attractor persists until, between (1=1.22 and 1.27, it
reverse period doubles (i.e., its period is repeatedly halved)
to a limit cycle. Limit cycles preceded by transients, at first
chaotic, then almost periodic, continue as () is increased,
although varying the initial conditions can result in either of
two tori. Above 1.50, the chaotic transient is increasingly
attracted to a weakly chaotic torus, which becomes estab-
lished as an attractor by 1.56. The torus shrinks, then grows,
stabilizes, and finally separates into islands above 1=1.69.

Above 1.70 the islands shrink, grow, and come together.
The previous limit cycle returns above 1.78, through a cha-
otic transient. The torus then tries to gain the upper hand,
resulting in a lengthening transient to a narrow window of
chaos below 1.81. Coming out of this window via reverse
period doubling, with chaotic transients, the torus forces a
compromise: a figure-8 limit cycle at {1=1.83. The chaotic
transient shortens at 1.84, lengthens again, and leads into
chaos by 1.88. By 1.95, there is a torus composed of a group
of islands, which shrink, grow, and come together as a
simple torus by =2.00.
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FIG. 3. Attractor for system (8).

In addition to those mentioned above, system (7) has
other coexisting attractors. These exist for the same value of
Q) but are reached from different initial conditions. For ex-
ample, a trajectory that begins at zo=—1.5i is attracted to the
single-loop limit cycle for any () between 1.3 and 1.8; to the
figure-8 limit cycle for 1.85; and at 1.90 to a figure-8 torus of
small islands, with a shape similar to the figure-8 limit cycle.
From 1.95 to above 2.10, —1.5i leads to chaos. The torus at
0 =1.70 varies in shape as z; varies from 0 to —i.

C. System (8)

For system (8), Fig. 3 shows the attractor, evident for ()
between 0.1 and 2.0, although the chaos is weaker with
smaller (), going through a minimum at 0.43. Above 1.0, the
trajectory sometimes contracts onto a torus with weak chaos
or no chaos; often these tori are composed of tiny islands
when viewed in Poincaré sections. The contraction happens,
for example, at approximately (1=0.42-0.44, 1.28-1.33, at
approximately 1.40, and again at 1.98. The transitions can be
rather sudden as a function of ().

A small change in initial conditions is sufficient to re-
cover the chaotic attractor common to most values of €, so
these tori are coexisting attractors. Other tori can be found by
varying the initial conditions at values where the large attrac-
tor is seen for z,=-0.5i. For example, z,=+0.5i produces a
torus at =1.0. At )=1.1, initial conditions from z,=-0.1i
to +5i produce a family of tori.

System (8) is almost area preserving; the trace of the
Jacobian, the average of —8x over the trajectory, is nearly
zero: —1.8 X 107, A Poincaré section of the trajectory start-
ing from various initial conditions (Fig. 4) has all the fea-
tures of a Hamiltonian system—a chaotic sea, KAM tori,
heteroclinic trajectories (trajectories that connect saddle
points), and island chains. Note, however, that the bulk of the
chaotic sea resides outside the outermost KAM torus and is
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X ] 3

FIG. 4. Poincaré section for system (8), showing features typical of a
Hamiltonian system.

thus not contained. This is the same as the situation encoun-
tered earlier with the two cases of z+f(2)=e™¥, which di-
verged after becoming chaotic. The difference here is that the
basin of attraction is quite large, providing containment of
the trajectory.

IV. CUBIC SYSTEMS

The search technique described in Sec. IIT was also used
for cubic polynomial f(z,z) with real coefficients. The result-
ing simplest four chaotic systems (Lyapunov exponents for
Q=1 in braces) were

2+0322+7+03=¢"" {0.1231,0,— 0.6053}, )
2+ (02224 Dz+7=¢"" {0.1540,0,— 1.3517},  (10)
i+ (2 =Pz+7=€"" {0.0892,0,-0.1621}, (11)

i+ @4+ + 7= {0.1157,0,—6.1517}. (12)

Again the behavior of these systems with ) as a control
parameter was investigated, by the same method used for the
quadratic cases, and using the same initial conditions for
each system, (zy,%)=(-0.57,0).

A. System (9)

The attractor for system (9) is displayed in Fig. 5. A limit
cycle for =0.1 becomes chaotic at 0.3457, reverse period
doubles to period-3 at 0.347, and moves through a narrow
window of chaos to period-2 at 0.348. With increasing (),
chaos returns, then gives way by shortening chaotic tran-
sients to period-3, back to period-2, and finally, by 0.351,
back to period-1.
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FIG. 5. Attractor for system (9).

The period-1 cycle breaks into chaos above 0.4095 and
reverse period doubles back to period-1 by 0.422. The pat-
tern repeats between 0.51 and 0.53, and again between 0.64
and 0.67. Just above 0.67, the system goes chaotic, until
moving to period-6 and then to period-3 at 0.71. By 0.715,
there is chaos again, which reverse period doubles to
period-1 at 0.73. Transitions are gradual, with slow ap-
proaches to the final states. Except for a coexisting limit
cycle that appears briefly at 0.77, the two-lobed limit cycle
now bears a distinct resemblance to the two-lobed attractor
in Fig. 5.

The limit cycle continues until 1=0.89, then moves into
chaos at 0.9, through periods 2, 4, and 6, with slow ap-
proaches rather than sudden transitions. Chaos continues un-
til, at 1=1.07 and 1.0825, there are limit cycles, with chaos
in between. Above 1.0825, chaos reverse period doubles to
period-1 near 1.11; transitions are through chaotic transients.

The limit cycle shrinks, but remains period-1, up to near
1.343, where it suddenly changes character and becomes
substantially larger. The coexisting smaller cycle can be re-
covered from the initial condition zy=—0.2-0.5i.

The larger cycle can also be reached at smaller ). From
the initial condition z,=-0.4i, just below Q=1.09 there is a
transition from the smaller limit cycle to the coexisting larger
one as a period-4. It period doubles to chaos at around 1.12,
then reverse period doubles to period-1 at 1.21. It remains
period-1 up to near 1.343, where it first appeared when start-
ing from zy=-0.5i.

Returning now to zo=-0.5i: Above (1=1.35, the larger
cycle develops a third and fourth lobes. From 1.42 to 1.45,
there is a chaotic transient to the smaller limit cycle. At 1.46,
the transient resolves into a cycle tracing just the third and
fourth lobes of the four-lobed structure. This happens again
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FIG. 6. Attractor for system (10).

at 1.48, but above and below 1.48, the smaller cycle is the
result. At 1.58, the chaotic transient becomes long-term
chaos, persisting until above 1.90. There the transient re-
solves into a large single-loop limit cycle, which shrinks with
increasing () through at least {)=2.00.

B. System (10)

Figure 6 shows the attractor for system (10). For ()
=0.1 to 0.888, there is a limit cycle, except for two narrow
chaotic windows, from 0=0.457 to 0.463 and 0.467 to
0.479. Entry to the former window is by lengthening periodic
transient and exit by reverse period doubling. Entry and exit
to the latter are both by lengthening transient. From =0.1
to 0.48, the cycle has four lobes, although one lobe can be
quite small. Above 0.48, it has two lobes, with the outline of
the attractor of Fig. 6 beginning to form by 0.66.

At 0.8879, the two-lobed limit cycle adds an inner loop,
becoming chaotic. After briefly stabilizing again at 0.8880,
chaos continues, with the attractor increasing in size, up to
0=1.31. Above 1.31, the two-lobed chaotic attractor devel-
ops two more lobes, but reverts to a two-lobed limit cycle at
1.3522. The cycle period doubles to period 4 at 1.355, re-
verse period doubles back to period 1 at 1.358, then period
doubles to chaos again just above 1.36. The resulting chaotic
attractor has just two lobes at first, but with increasing (),
soon recovers the other two. Chaotic transients of widely
varying lengths lead into the limit cycles, where present.

The chaotic attractor continues to exist well beyond ()
=2. With increasing (), the trajectory spends more time in a
central helix formed from the inner loop that appeared at
0=0.8879, and less time in the outer loops that form the four
lobes.
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FIG. 7. Attractor for system (11).

C. System (11)

System (11) produces the attractor shown in Fig. 7. Note
the symmetry, where sometimes x and y [i.e., Re(z) and
Im(z)] change signs, flipping the attractor across the x=—y
line. This symmetry is also present in some of the limit
cycles this system produces. There is hysteresis associated
with the symmetry, since a chaotic trajectory can flip, but
once established as a limit cycle, it cannot.

For this system, there exists a variety of limit cycles
from Q=0.1 to 0.95, some very complex, and some with
long chaotic transients, interspersed with narrow windows of
chaos. Worthy of note is a 7-cycle at 0.65, which doubles to
14 and again to 28 before becoming chaotic below 0.651.

The chaotic window closest to 0.95 spans approximately
0.906-0.928. Entry is by intermittency; exit is by reverse
period doubling. The resulting limit cycle at 0.9322 immedi-
ately period doubles back to chaos by 0.93 222.

This is the low side of a wide window of mainly chaotic
behavior, with some closely confined exceptions: At 1.09, the
chaos is very weak, and at 1.19 and 1.23, there are limit
cycles. The wide window closes at {)=1.243, where a limit
cycle forms again. This cycle persists until above 1.45,
where a torus appears, first as a gradually lengthening tran-
sient; but finally taking over as an attractor, just above ()
=1.50. Meanwhile, a symmetric pair of the previous limit
cycles continues, coexisting with the torus.

The torus is a feature until 1.635, where it reclaims tran-
sient status, leading back to the limit cycle via a chaotic
transient. At 1.64, the resulting limit cycle is quite distinct,
but with further increase in (), the original version of the
cycle soon reappears. By ()=1.72, there is again a chaotic
attractor. Chaotic behavior continues until above (1=2; how-
ever, through =1.90, the torus can still be reached from
ZQ=—0.7i.

Chaos 19, 013124 (2009)

FIG. 8. Attractor for system (12).

At 1.66, the initial condition zo=0 leads to the distinct
cycle noted at 1.64. Increasing ) with this initial condition
causes the cycle to become gradually more chaotic, until at
1.76 the resulting attractor is nearly indistinguishable from
the one reached from zy=-0.5i. Here is another case where
the chaotic attractor seems to result from a contest between
two different stable attractors.

D. System (12)

The attractor for system (12), shown in Fig. 8, displays
symmetry across x=-y, like system (11). The limit cycles
and chaotic attractors described below can exist on either
side of the line or on both at once, depending on ) and on
the initial condition.

From Q=0.1 to 0.76, there is a limit cycle which, just
above (.76, period doubles to weak chaos. At 0.77 a narrow
window for a period-5 cycle opens, while at 0.775 a narrow
window begins for a period-3 cycle. Above the period-3 win-
dow, the system is chaotic, but at 0.84, a limit cycle reap-
pears, period doubling back to chaos by 0.845.

At 0.86, a limit cycle exists in a very narrow range.
Another limit cycle appears and disappears between 0.89 and
0.895; several more occupy the range between 0.895 and
0.902. From 0.903 to 0.906, there is weak chaos. At 0.907, a
narrow window opens for a period-4 cycle, above which
chaos prevails, until reverse period doubling leads to a limit
cycle at 1.02. A lengthening transient leads to chaos at 1.03,
followed by reverse period doubling to a limit cycle just
below 1.05.

Intermittency then leads into chaos, out of it again by
1.12, and back in by 1.13. By 1.18, larger scale reverse pe-
riod doubling begins, leading to a limit cycle just below ()
=1.30. The transitions take place by means of a transient that
gradually separates into a limit cycle. Then as ) increases,
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the transient gradually comes together into the next lowest
period limit cycle. The resulting period-1 cycle at 1.30 per-
sists until well above )=2.

V. CONCLUSIONS

For complex-variable systems of the form z+f(z)=¢'¥,
where f(z) is an analytic function, it was shown that there
can be no chaotic solutions. Furthermore, no chaotic solu-
tions for systems of the form z+f(Z)=e™¥, with polynomial
f(Z), were observed, but in a brief search for systems of the
form z+f(z,7)=e¥, several simple chaotic systems were
found.

With ) as a control parameter, period doubling, inter-
mittency, and lengthening chaotic transients as routes to
chaos were observed in these systems, as well as period add-
ing. In a number of cases, coexisting attractors occurred.
Poincaré sections from some systems display characteristics
of Hamiltonian systems, particularly in one case where the
dissipation (energy loss) was very slight.

Further inquiries into chaotic complex-variable systems
are planned.
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