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A sinusoidally-driven system with a simple signum nonlinearity term is investigated through an
analytical analysis as well as dynamic simulation. To obtain the correct Lyapunov exponents,
the signum function is replaced by a sharply varying continuous hyperbolic tangent function.
By phase portraits, Poincaré sections and bifurcation diagrams, the rich dynamic behaviors of
this system are demonstrated, such as an onion-like strange attractor, pitchfork and attractor
merging bifurcations, period-doubling routes to chaos, and chaotic transients in the case of small
damping. Moreover, the chaos persists as the damping is reduced to zero.
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1. Introduction

It has been known that many nonlinear functions
can generate chaos. Some of the earliest examples
of chaos occur in periodically forced nonlinear oscil-
lators, which have the form ẍ + f(ẋ, x) = F sin ωt,
where the function f(ẋ, x), contains at least one
nonlinearity in the damping (ẋ) term or the restor-
ing force (x) term. For example, the van der Pol
equation has an x2 in the damping term [van der
Pol, 1926], while the Rayleigh differential equation
[Birkhoff & Rota, 1978] is similar to the van der
Pol equation but has an ẋ2 nonlinearity in the
damping. More common and more widely stud-
ied is the system in which the damping is linear,
but the restoring force contains a cubic nonlinear-
ity, such as the Duffing oscillator [Duffing, 1918],
the Ueda oscillator [Ueda, 1979], Duffing’s two-well
oscillator [Moon & Holmes, 1979], as well as a vari-
ant of this function [Bonatto et al., 2008] without
the linear term in x. Several hybrid chaotic forced

oscillators have been studied by combining two
cases such as the Rayleigh–Duffing oscillator
[Hayashi et al., 1970] and the Duffing–van der
Pol oscillator [Ueda, 1992]. Additionally, quadratic
functions in the restoring force term can also suf-
fice to give chaos in a forced oscillator [Tang
et al., 2001]. Other systems in which f(ẋ, x) is
a more complicated nonlinear function have been
studied [Scheffczyk et al., 1991]. A simpler non-
linearity is a piecewise linear function involving a
single absolute value. Piecewise linear oscillators
with more than two linear regions that produce
chaos when periodically forced have been exten-
sively studied, for example, using Chua’s diode
[Murali et al., 1994; Srinivasan, 2008], and using
damping control for a chaotic impact oscillator
[Souza et al., 2007]. Whereas the absolute value
is a continuous piecewise-linear function, discontin-
uous functions sometimes arise in models of real
applications. An example is a harmonic oscillator
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with Coulomb damping [Feeny, 1992]. For a forced
oscillator, the simplest such case would be f(ẋ, x) =
ẋ − x + sgn(x), which is arguably simpler than the
so-called “simplest sinusoidally-forced chaotic sys-
tem” studied in [Gottlieb & Sprott, 2001] which
involves an x3 nonlinearity. Here, we are interested
in the case where the only nonlinearity is the signum
function in the restoring force term. It is well known
that the signum function describes a class of sim-
ple discontinuous switching structures, or one type
of the most important nonsmooth structures. On
one hand, a simple nonsmooth structure may eas-
ily create complex phenomena, and therefore, non-
smooth technique has gradually become a powerful
strategy for generating complex dynamics in sim-
ple autonomous systems [Chen et al., 2006]. On
the other hand, switching schemes usually can be
simply structured and easily designed with cost-
effective electronic circuit realizations.

The plan of the paper is as follows. In Sec. 2,
we present the forced oscillator and its attractor. In
Sec. 3, the system equations are briefly investigated
through analytical solutions in the respective linear
regions. In Sec. 4, we describe the dynamics and
bifurcations of the forced system. Finally, we sum-
marize the results and indicate future directions.

2. The Periodically Forced
Oscillator

Consider the following nonautonomous differential
equation

ẍ + aẋ − x + b sgn(x) = F sin(ωt), (1)

where, a, b, F, ω are positive constants, and sgn(x)
is the signum function which is either +1 or −1
depending on whether its argument x is positive
or negative, respectively. This system resembles the
Duffing oscillator except that the nonlinearity is
in the low order term rather than in the high
order term. For simplicity, we shall set the param-
eter ω = 1 as described in [Thompson, 1997], and
regard a, b, and F as the control parameters. The
“onion-like” strange attractor is observed by choos-
ing appropriate parameters as shown in Fig. 1 with
the largest Lyapunov exponent of 0.1241, and the
Kaplan–Yorke dimension DKY = 2.134.

It is instructive to examine the solution of
Eq. (1) in phase space. For this purpose, rewrite
Eq. (1) with ω = 1 in terms of x and y as{

ẋ = y,

ẏ = −ay + x − b sgn(x) + F sin(t).
(2)
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Fig. 1. The onion-like attractor of Eq. (1) with a = 1.05,
b = 1, F = 1.1, and ω = 1.

If we let z = t, then the nonautonomous system
is converted into an autonomous one, and the two-
dimensional system becomes three-dimensional


ẋ = y

ẏ = −ay + x − b sgn(x) + F sin(z) .

ż = 1
(3)

3. Analytical Study

3.1. Explicit analytical solution

Let us briefly investigate this system equation by an
analytical solution in each of the two linear regions.
Let D1 be the subspace where x is positive and D2

be the subspace where x is negative. D1 and D2 are
represented as

D1 = {(t, x1, ẋ1) | x > 0},
D2 = {(t, x2, ẋ2) | x < 0}. (4)

In each of the regions D1 and D2, Eq. (1) is linear
when F = 0. The stability depends on the eigen-
values of the equation λ2 + aλ − 1 = 0, which are
found to be (−a ± √

a2 + 4)/2. Consequently the
equilibrium points in both the D1 and D2 regions
are saddle points, either a > 0 or a < 0. Then
Eq. (1) can be represented as a single second-order
inhomogeneous linear differential equation in each
of the regions D1 and D2 as

ẍ + aẋ − x = F sin(ωt) − b x > 0, (5a)

and

ẍ + aẋ − x = F sin(ωt) + b x < 0. (5b)

Equation (2) can be explicitly integrated in terms of
elementary functions in each of the regions D1 and
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D2 and matched across the boundaries to obtain
the full solution as shown below.

The general solution to Eq. (5a) can be easily
written as

x(t) = Aeλ1t + Beλ2t + E1 sin ωt

+ E2 cos ωt − b, (6)

where A and B are constants of integration and

E1 =
F (1 + ω2)

[a2ω2 − (1 + ω2)2]
(7)

E2 =
Faω

[a2ω2 − (1 + ω2)2]
. (8)

Then ẋ(t) is obtained from Eq. (6) as

ẋ(t) = Aλ1e
λ1t + Bλ2e

λ2t

+ E1ω cos ωt − E2ω sin ωt. (9)

From Eq. (2), it follows that

y = ẋ(t). (10)

The constants A and B in the above equations
can be evaluated by solving both Eqs. (6) and (9)
at a suitable initial state with x0 and y0 as initial
conditions at time t = t0. The constants A and B
can be obtained from Eqs. (6) and (9) as

A =
e−λ1t0

λ2 − λ1
[x0 − λ2y0 + (E2λ2 − E1ω) cos ωt0

+ (E2ω + E1λ2) sin ωt0 ∓ bλ2], (11)

B =
e−λ2t0

λ2 − λ1
[x0 − λ1y0 + (E2λ1 − E1ω) cos ωt0

+ (E2ω + E1λ1) sin ωt0 ∓ bλ1], (12)

where ∓ represent D1 and D2 regions respectively.

3.2. The associated Hamiltonian
function

Using the kinetic energy function y2/2 and the
potential energy function −x2/2 + b|x| for sys-
tem (2), we can define the system Hamiltonian func-
tion as

H(x, y) =
1
2
y2 − 1

2
x2 + b|x|. (13)

This function is piecewise defined, and is con-
tinuous but not differentiable at (and only at) x =
0. On the level set H(x, y) = 0 with y = 0, it has
three zeros: x0 = 0 and x1,2 = ±2b as shown in
Fig. 2. It shows that system (1) is similar to the
Duffing system for the case with the restoring force
of the form x − 0.4x3 [Sprott, 2003].
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Fig. 2. The Hamiltonian function of system (1) and Duffing
oscillator with one potential well.

4. Dynamical Behaviors

4.1. Calculating the largest
Lyapunov exponent

Lyapunov exponents are the best indicators to cat-
egorize the different classes of nonlinear phenom-
ena. A positive Lyapunov exponent confirms chaos.
If the system equations are known, algorithms
[Parker & Chua, 1989] can readily be applied to
compute the largest or all of the exponents. Alterna-
tively, the method of embedded dimensions may be
applied to a time series resulting from simulations
and experiments to estimate their exponents [Wolf
et al., 1985]. But these approaches do not work sat-
isfactorily for nonsmooth systems, i.e. those where
the vector field is not continuously differentiable.
For example, if parameters a = 1.4, b = 1, F = 1.1,
ω = 1, and initial condition [0.7065, −0.1282, 500]
in Eq. (1), then the system is a limit cycle as shown
in Fig. 3(a). But the calculated largest Lyapunov
exponent is 0.5204, which is evidently incorrect, and
is an example of the chaotic limit cycle paradox as
described in [Grantham & Lee, 1993]. To calculate
the largest Lyapunov exponent of system (1) cor-
rectly, the signum function can be replaced by con-
tinuous equivalents [Gans, 1995],

sgn(x) → tanh(nx),

where n is a large constant. The question is how
to determine a suitable value for n. We calculate
the largest Lyapunov exponent versus n for states
of limit cycle [Fig. 3(a)] and chaos [Fig. 3(c)] in sys-
tem (1) respectively, and the curves are presented in
Figs. 3(b) and 3(d). As shown in Figs. 3(b) and 3(d),
if n is a very small number, then the hyperbolic
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Fig. 3. Phase portraits and their maximum Lyapunov exponent versus n. (a) Limit cycle. (b) Maximum Lyapunov exponent
for limit cycle. (c) Chaos. (d) Maximum Lyapunov exponent for chaos.

tangent is far from the signum function. If n is
a much larger number, the hyperbolic tangent is
nearly equal to the signum function. The results are
unreliable in these limits. So, for system (1), n can
be chosen from 23 to 212, in which range the calcu-
lated Lyapunov exponent is independent of n. After
the signum function is replaced by tanh with n =
1000, the largest Lyapunov exponent of the limit
cycle shown in Fig. 3(a) becomes −3.6885 × 10−4.

4.2. Bifurcations and route
to chaos

To study the dynamics of system (1), three cases
were considered as follows.

(1) Fix b = 1 and F = 1.1, and vary a. The system
is calculated numerically with a ∈ [1, 1.45] for an

increment of ∆a = 0.0005. The bifurcation diagram
is shown in Fig. 4(a). A pitchfork bifurcation occurs
at a = 1.365, and two attractors, denoted in blue
and red, respectively, coexist when the parameter is
less than 1.365. An attractor-merging crisis bifurca-
tion occurs in this case. The attractors grow larger
as a decreases, until they collide at a = 1.07. Thus
two separate attractors merge into one and remain
bounded until a = 1.04. If the orbit is initially con-
fined to one of the attractors, the region occupied
by it suddenly doubles in size at the crisis point.
With an increase in the value of the parameter a,
a reverse period-doubling phenomenon is observed.
The largest Lyapunov exponent of the system (1)
was computed numerically for a ∈ [1.05, 1.4] in
increments of ∆a = 0.01 and is shown in Fig. 4(d).
It is evident that chaos exists for 1.05 ≤ a ≤ 1.1.
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Fig. 4. Bifurcation and largest LE diagrams with different control parameters for Eq. (1). (a) b = 1, F = 1.1. (b) a = 1.05,
F = 1.1. (c) a = 1, b = 1. (d) Diagram of largest LE.

(2) Fix a = 1.05 and F = 1.1, and vary b. The sys-
tem is calculated numerically with b ∈ [0.95, 1.35]
for an increment of ∆b = 0.0005. The bifurca-
tion diagram is shown in Fig. 4(b). A pitchfork
bifurcation occurs at b = 1.24, and two attrac-
tors, denoted in blue and red, respectively, coexist
when the parameter is less than 1.24. An attractor-
merging crisis bifurcation occurs in this case. The
attractors grow larger as b decreases, until they col-
lide at b = 1.03. Thus two separate attractors merge
into one and remain bounded until b = 0.99. If
the orbit is initially confined to one of the attrac-
tors, the region occupied by it suddenly doubles in
size at the crisis point. For an increase in the value
of the parameter b, a reverse period-doubling phe-
nomenon is also observed. The largest Lyapunov

exponent of the system (1) was computed numeri-
cally for b ∈ [1, 1.4] in increments of ∆b = 0.01 and
is shown in Fig. 4(d). It is evident that chaos exists
for 1 ≤ b ≤ 1.05.

(3) Fix a = 1 and b = 1, and vary F . The system
is calculated numerically with F ∈ [0.8, 1.1] for an
increment of ∆F = 0.0005. The bifurcation diagram
is shown in Fig. 4(c). A pitchfork bifurcation occurs
at about F = 0.855, and two attractors, denoted in
blue and red, respectively, coexist when the param-
eter is larger than 0.855. An attractor-merging crisis
bifurcation occurs in this case. The attractors grow
larger as F increases, until they collide at F = 1.04.
Thus two separate attractors merge into one and
remain bounded until F = 1.06. If the orbit is
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initially confined to one of the attractors, the region
occupied by it suddenly doubles in size at the cri-
sis point. With an increase in the value of param-
eter F , a period-doubling phenomenon is observed.

The largest Lyapunov exponent of the system (1)
was computed numerically for F ∈ [0.8, 1.06] in
increments of ∆F = 0.01 and is shown in Fig. 4(d).
It is evident that chaos exists for 1.015 ≤ F ≤ 1.062.
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Fig. 5. Phase portraits (left) and Poincaré sections (right) of Eq. (1). (a) F = 0.65, one 1T -periodic solution. (b) F = 0.95,
two 1T -periodic solutions. (c) F = 1, two 2T -periodic solutions. (d) F = 1.01, two 4T -periodic solutions. (e) F = 1.045,
chaotic solution.
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Fig. 5. (Continued)

From the three cases above, it can be con-
cluded that selection of appropriate values for the
system control parameters can be used to suppress
or generate chaos, and that the route to chaos is the
same for each of the three parameters.

To observe the route to chaos, the phase
portraits and Poincaré sections are presented in
Figs. 5(a)–5(e) by fixing a = b = 1 but changing
the control parameter F . The Poincaré section is in
the plane of z mod 2π = 1. Increasing the parame-
ter F , we first observe one limit cycle in the phase
portrait as seen in Figs. 5(a1), 5(b1) and one point
in the Poincaré sections in Figs. 5(a2), 5(b2), then
two cycles as shown in Fig. 5(c1) and two points in
Fig. 5(c2), four cycles in Fig. 5(d1), four points in
Fig. 5(d2), and finally an infinite number of cycles as
shown in Figs. 5(e1) and 5(e2). The route to chaos
is by period-doubling bifurcations.

At the same time, when parameter F increases
from 0.65 to 1.045, a pitchfork bifurcation and a
pair of attractors are born as shown in Fig. 5(b),

and then the two coexisting attractors expand as
shown in Figs. 5(c) and 5(d) and finally merge by
an attractor-merging crisis bifurcation at the onset
of chaos as shown in Fig. 5(e).

4.3. Chaotic transients with
small damping

A phenomenon very common in dynamical systems
is that they seem chaotic during some transient
period, but finally fall onto a periodic attractor.
This phenomenon is said to be a chaotic transient,
which has been reported for the standard Lorenz
system [Yorke & Yorke, 1979]. Superlong chaotic
transients (referred to as “supertransients”) have
been observed in nonlinear circuit experiments [Zhu
et al., 2001]. In such a case, trajectories starting
from random initial conditions wander chaotically
for an arbitrarily long time before settling into a
final attractor that is usually nonchaotic, and the
average transient lifetime, which is a function of
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Fig. 6. Bifurcation diagram and final attractor for Eq. (1) with a = 0.00015, b = 1 and F = 0.02. (a) Chaotic transient.
(b) The final attractor.

the damping parameter and external driving force,
was studied in [Shen et al., 1997]. Such a situation
also occurs in system (1). Choosing initial condi-
tions [x0, y0, z0] = [0.4589, 0.4262, 0] and a small
damping parameter a = 0.00015, the chaotic tran-
sient is shown in Fig. 6(a). It is evident that the
trajectory is chaotic with many periodic windows
until t > 6 × 106, whereupon it finally becomes a
limit cycle as shown in Fig. 6(b), and thereafter
remains so. It is observed that the transient life-
time is a function of parameters a and F , and when
a → 0, the chaotic transient has an infinite lifetime.

4.4. The undamped oscillator

If we allow the damping to be zero (a = 0)
in Eq. (1), then two conservative systems are

given by

ẍ − x + b sgn(x) = F sin ωt, (14)

ẍ + b sgn(x) = F sin ωt. (15)

Equation (15) with f(x) = sgn(x) is especially
interesting because it is arguably simpler than the
so-called “simplest sinusoidally-forced chaotic sys-
tem” [Gottlieb & Sprott, 2001] which has a cubic
nonlinearity. In fact, it is the special case of the
simplest one with p = 0 in [Gottlieb & Sprott, 2001].
A trajectory of the conservative system (15) is
shown in Fig. 7(a) for initial conditions [x0, y0, z0] =
[1, 0.1, 0] and parameters b = F = ω = 1. The
largest Lyapunov exponent is 0.0465 in this case.
A Poincaré section in the xy-plane for t mod 2π =
0.5π for various initial values of x in the range
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Fig. 7. Trajectory (a) and Poincaré section (b) of the conservative system in Eq. (15).
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−2 < x0 < 9 and y0 = 0, z0 = 0.5π is shown in
Fig. 7(b). The chaotic sea is small, as is typical for
such periodically forced systems [Sprott, 2003].

5. Conclusions

This paper has reported and analyzed a simple
periodically-forced system with a nonlinear func-
tion sgn(x), which can generate chaos for appropri-
ate parameters. The dynamical properties of this
chaotic system have been analyzed, including the
Lyapunov exponents, bifurcations, routes to chaos
and chaotic transients. The results show it has
abundant dynamic behaviors. Therefore, research
on dynamics of nonlinear systems with a signum
nonlinearity has great theoretical significance and
practical applications (such as liquid mixing and
secure communications). It is worthwhile to explore
further simple systems with the signum function to
create chaos for different demands.
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