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It is shown that, for analytic functions f, systems of the form 2 = f(z,2) and Z = f(z) cannot
produce chaos; and that systems of the form Z = f(z*, 2*) and Z = f(z,2") are conservative.
Eight simple chaotic systems of the form z = f(z,2*) with quadratic and cubic polynomial
f(z,2") are given. Lyapunov spectra are calculated, and the systems’ phase space trajectories
are displayed. For each system, a Hamiltonian is given, if one exists.
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1. Introduction

Since Edward Lorenz [1993] coined his famous “but-
terfly effect” metaphor in 1972, chaotic systems
with real variables have been studied and written
about extensively [Strogatz, 1994; Guckenheimer &
Holmes, 1983; Hilborn, 1994; Nayfeh & Balachan-
dran, 1995; Sprott, 2003]. In the last two decades,
these investigations have included systems with
complex variables, with applications in many areas,
including rotor dynamics [Cveticanin, 1995], load-
ing of beams and plates [Nayfeh & Mook, 1979],
plasma physics [Rozhanskii & Tsendin, 2001], opti-
cal systems [Newell & Moloney, 1992] and high-
energy accelerators [Dilao & Alves-Pires, 1996].
Theoretical studies have focused on finding approx-
imate solutions to various classes of complex valued
equations, and on the control of chaos [Cveticanin,
2001; Mahmoud & Bountis, 2004; Mahmoud, 1998;
Mahmoud et al., 2001].
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Following a number of previous studies [Sprott,
1994, 1997a, 1997b; Malasoma, 2000; Marshall &
Sprott, 2009], a search was conducted for simple
examples of autonomous second-order chaotic com-
plex systems.

Section 2 discusses theoretical considerations
and numerical methods, including proscription of
chaos in systems Z = f(z) and 2 = f(z,2); and sys-
tems Z = f(z,2*) and 2 = f(z*, 2*) being conserva-
tive. In Secs. 3 and 4, eight simple chaotic quadratic
and cubic systems of the form 2 = f(z,z*), with
polynomial f, are presented. Section 5 is a brief
summary.

2. Theoretical Considerations and
Numerical Techniques

2.1.

This search for simple autonomous second-order
chaotic complex systems began with a search

Systems involving 2z and z*
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for dissipative systems of the form Z = f(z,2).
This form is equivalent to the two-dimensional,
first-order complex variable system

21 = 29
2o = f(21, 22)

and with z = z + iy and f(z,2) = u(z,y,2,9) +
iv(z,y,x,7), to the four-dimensional real system

(1)

i‘l = T2

U1 =y2

- (2)

Eo = u(21, Y1, T2, Yo)

Y2 = v(@1, Y1, T2, Y2)
If f is analytic, the Cauchy-Riemann equa-
tions require that Ou/0x; = 0v/0y,0u/dy1 =
—0v/0x1,0u/dxes = Ov/Oys and Ou/dys =
—0v/0x2. Thus the Jacobian of (2) is
[0 0 1 0 1
0 0 0 1
O o1 %n ou
Ox1 Oy1 Oxo Oyo
ov Ov Ov Ov

[0x1 Oy1 Oxz Oyl

0 0 1 0
0 0 0 1

— 3
a b c d|’ 3)
-b a —-d c

which has complex conjugate pairs of eigenvalues

%[(c +id) £ \/c® — d? + 4a + 2i(cd + 2b)]
%[(c —id) £ \/c2 — d? + 4a — 2i(cd + 2b)].

These can in turn be written as

e+ id) & (p+iq)]

(4)

(5)

Sle—id) £ i)

A theorem of Haken [1983] requires that, given a
bounded solution with a positive Lyapunov expo-
nent and not containing a fixed point, there must
also be a zero Lyapunov exponent. Thus, since the
Lyapunov exponents are the time averages of the
real parts of (4), or equivalently (5), (¢) = +(p),
where the angle brackets denote time average.

At the same time, for a bounded solution, trace
(J) = 2¢, the sum of the Lyapunov exponents, must
average to something less than or equal to zero, i.e.

() <0. If (¢) = —(p), then the nonzero Lyapunov
exponents are both ({(c¢) — (p))/2 = (¢) < 0, which
contradicts our assumption of a positive Lyapunov
exponent. Without at least one positive Lyapunov
exponent, no chaos is possible. Similarly, if we sup-
pose that (¢) = (p), then the nonzero exponents are
both ({(¢) + (p))/2 = (¢) <0, and again no chaos is
possible.

If no chaos is possible for z = f(z,2), is
chaos possible for the complex conjugate twin Z =
f(2*,2*)7? For this system, with analytic f, the Jaco-
bian is

[0 0 i 0 ]
0 0 0 1
jo|ow o ou o
Ox1 Oyr Oxo  Oys
W v o
_(9.11‘1 Oyr  Oxo 6?/2_
0 01 0
0 0 0 1
a b ¢ dl’ (6)
_b —a d -—c

because the Cauchy-Riemann equations change
sign under complex conjugation. The eigenvalues for
this Jacobian are complicated, precluding easy anal-
ysis, but it is clear by inspection that trace (J) = 0,
so this system is conservative, or phase-space vol-
ume preserving, and may be Hamiltonian. A search
for chaotic cubic and quadratic polynomial systems
of this form was conducted in the manner described
below in Sec. 2.2, but all cases diverged.

One could search for chaos in systems of the
form 2 = f(z,2,2%,2%), but it was judged that they
would not be simple systems.

2.2. Systems zZ = f(z),2 = f(z*) and
2= f(z,2%)

The form 2 = f(z,2*) is equivalent to the two-
dimensional, first-order complex variable system
2 =2

o= f(a1,50) o

and with z =x + iy and f(z,2*) =u(x, y) + iv(z,y),
to the four-dimensional real system

.Ci?l = T2

Y1 = Y2 ()
do = u(z1,y1)

Y2 = v(z1,y1)
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The Jacobian of (8) is

[0 0 1 0]

0 0 0 1 0 0 1 0
0 0 0 1

6$1 6:[/1 a b 0 0
c d 0 0

oo

_6$1 (9:1/1 |

which has zero trace, so these systems are conser-
vative, or phase-space volume preserving, and may
be Hamiltonian.

The eigenvalues of the Jacobian (9) are

r et d V@ dP T . (0)

V2

For systems of the form 2 = f(z), if f is an analytic
function, the Cauchy-Riemann equations require
that @ = d and b = —c. The eigenvalues (10) then
become

+va£ib (11)

Again Haken [1983] requires a zero Lyapunov
exponent, and the Lyapunov exponents are the
time averages of the real parts of the eigenvalues
(11) over a trajectory. The real part of (11) is

+[Va?+ b+ a/Q]%. If it averages to zero with the
+ sign, it also will average to zero with the —sign,
and vice versa, so all four Lyapunov exponents must
be zero. Chaos requires at least one positive Lya-
punov exponent, so there can be no chaos for sys-
tems of the form Z = f(z).

On the other hand, for systems of the form
Z = f(z*), for analytic f, as mentioned above, the
Cauchy—Riemann equations change sign: a = —d
and b = ¢. The eigenvalues (10) become

£V (@ + 02, =+iy/(a@+b2) (12)

22(2*)2—2’
5=22— 2"

3=5"—zz"

{0.0435,0,0, —0.0435}

{0.0053,0,0, —0.0053}
{0.0039,0,0, —0.0039}

The second pair satisfies Haken [1983], allowing no
easy conclusions about the first pair. A search for
chaotic cubic and quadratic polynomial systems of
this form was conducted as described below, but all
cases diverged.

At this point, a search for chaos with systems of
the more general form 2 = f(z, 2*) was conducted.
For simplicity, the search was limited to cubic and
quadratic polynomials f, with real coefficients, as
follows:

f(z,2%) = ag + a1z + 022 + azzz* + as2”*
+ a5(z*)2 + ag2’ + ar2?
+ agz(2%)? + ag(2*)3 (13)

The coefficients a; were randomly chosen, as were
the initial conditions. The random values were
taken from the squared values of a Gaussian nor-
mal distribution with mean zero and variance 1,
with the original signs of the random values restored
after squaring.

During the search, trajectories were followed
using both fixed-step and adaptive-step fourth-
order Runge-Kutta integrators [Press et al., 1992].
When a chaotic system was found, it was simpli-
fied further, while preserving the chaotic behavior,
by scaling or reducing the coefficients a; to simple
one-digit values, or to one, if possible.

The largest Lyapunov exponent was calculated
using an adaptive-step fourth-order Runge-Kutta
integrator [Press et al., 1992], and the method
detailed in [Sprott, 2003]. From (10), the Lyapunov
exponents occur in equal pairs, with opposite signs.
Thus if the largest (positive) exponent is known,
and there is one zero exponent [Haken, 1983], the
other two exponents follow.

Z*

3. Quadratic Systems

The simplest three quadratic polynomial Z =
f(z,2*) systems found were, with Lyapunov spec-
tra in braces, and starting from initial conditions
(207 20)7

(0.54,0) (14)
(0.3 +0.1i,0.64) (15)
(0.85 4 0.117,0.03 — 0.67) (16)

The three phase space trajectories are displayed in Fig. 1. System (14), in the form

i = x?

(17)

y=—-"2xy—y
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Fig. 1.

may look familiar, because it is the well-known
Hénon-Heiles [1964] system, but with x and y
reversed. As such, it has a Hamiltonian,

State space plots: (a) System (14); (b) system (15); (c) system (16); (d) system (20).

which is similar to (17), but the sign change
in the second equation destroys the possibil-
ity of a Hamiltonian. System (16) also lacks a

2 2 2,2 3 Hamiltonian.
H:(x Y ;x +y)+my2—%. (18)
System (15) can be written 4. Cubic Systems

.o 2 2

s =EC ST = (19) The five simplest cubic polynomial 2 = f(z, z*) sys-
y=2zy+y tems found were, with Lyapunov spectra in braces,

| and starting from initial conditions (2o, Zo),

F=1- 222" {0.0359,0,0, —0.0359}  (—0.4 + 0.2i, —0.3) (20)
5=28 - {0.0285,0,0, -0.0285}  (—0.11 — 0.6i, —0.24 + 1.07i) (21)
5=2%— 2% {0.0804, 0,0, —0.0804} (0.5 + 0.57,0) (22)
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Fig. 2. State space plots: (a) System (21); (b) system (22); (c) system (23); (d) system (24).
5=(2")?% =22 {0.2479,0,0,—0.2479} (0.5 + 0.5, 0) (23)
5=2°4 22" {0.0070,0,0,—0.0070}  (—3.79 — 1.724,0.89 + 0.371) (24)
The phase space trajectory for system (20) is shown
in Fig. 1; those for systems (21)-(24) are shown System (23) has the Hamiltonian
in Fig. 2. System (20) shares the z2z* term with 2 | 2 4, .4 2,2 3
- -
systems (22) and (23). This term is also a con- H= @+y) @ +y) + 2 2 + 2y,
: ’ 2 2 4 2 3
stituent of various complex Duffing oscillators stud- (26)

ied in [Cveticanin, 2001; Mahmoud & Bountis, 2004;

Mahmoud et al., 2001]. System (20), when written

in terms of real and imaginary parts « and y, has

the Hamiltonian

2 2 4., ,4 2,2

xr° + xr* + T
g) @4y 2y

2 4 2 (25)

b

_x,

while systems (21) and (22) have no Hamiltonian.

but system (24) does not have a Hamiltonian.

5. Summary

It was shown that, if f is an analytic function,
chaos cannot occur in systems of forms zZ = f(z)
and 2 = f(z,2), and systems 2 = f(z,2*) and
Z = f(z*, 2%) are conservative. Search for chaotic
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systems of form Z = f(z2*) and 2 = f(z*, 2*), with
quadratic and cubic polynomials f, yielded only
systems that diverged. A search for simple chaotic
systems of the form 2 = f(z, 2*), with quadratic and
cubic polynomials f, found eight such systems. For
each chaotic system, the Lyapunov spectrum was
calculated, and the phase space trajectory was dis-
played. For each chaotic system that has a Hamil-
tonian, the Hamiltonian was given. Similarities to
previously studied systems were noted.
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