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A simple Jerk system with piecewise exponential nonlinearity
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Abstract

Third-order explicit autonomous differential equations in one scalar variable, sometimes called jerky
dynamics, constitute an interesting subclass of dynamical systems that can exhibit chaotic behavior. In this
paper, we investigated a simple jerk system with a piecewise exponential nonlinearity by numerical
examination as well as dynamic simulation. Using the largest Lyapunov exponent as the signature of chaos,
the region of parameter space exhibiting chaos is identified. The results show that this system has a period-
doubling route to chaos and a narrow chaotic region in parameter space. The rescaled system is
approximately described by a one-dimensional quadratic map. The parameters are fitted to a simple
function to predict the values for which chaos occurs in the case of high nonlinearity where the region in
parameter space that admits chaos is relatively small.
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1. Introduction

Since the Lorenz equations were
discovered in 1963 [1], an immense effort has
been devoted to identifying and understanding
chaotic dynamics. However, there are still many
open basic problems even for three-dimensional
continuous-time  dynamical systems. For
example, during the last two decades, a number
of workers [4-16] have attempted to find three-
dimensional chaotic systems that are
functionally as simple as possible. The minimal
functional form of three-dimensional chaotic
vector fields is not known and opens a largely
unexplored field. In 1994, an investigation
identifying minimal chaotic systems was
reported by Sprott [2]. Using a numerical
search, he found 19 distinct chaotic models
(labeled A to S) that are algebraically simpler
than the Lorenz system [1] and the Rdssler
system [3]. Subsequently, Hoover [4] pointed
out that the only conservative system of those
models was an already known special case of
the Nose-Hoover thermostat dynamical system,
which exhibits time-reversible Hamiltonian

chaos. In 1996, Gottlieb [5] pointed out that this
system can be recast into an explicit third-order
form X =J(x,x,X), which he called a ‘jerk
function’, and asked a provocative question:
‘What is the simplest jerk function that gives
chaos?’ In response, Linz [6] reported that the
jerky dynamics for the Lorenz [1] and Rossler
[3] model possess functionally complicated
forms, and are not suitable candidates for the
Gottlieb’s simplest jerk function, and Sprott |7,
8] described a variety of simple jerk cases
including two ha,'Ving a total of three terms with
two quadratic nonlinearities and a particular
case having three terms with a single quadratic
nonlinearity, which are simpler than any
previously known. Following Linz’s study [6],
Eichhorn et al. [9] found that fifteen of Sprott’s
chaotic flows can be recast into a jerk form, and
classified these fifteen models, the Réssler
toroidal model [10], and Sprott’s minimal
chaotic flow [8] into seven quadratic
polynomial classes of jerky dynamics (labeled
ID1 to JD7), and then examined the simple
cases of JD1 and JD2 in detail and identified
the regions of parameter space over which they
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exhibit chaos [11]. In addition to the work on
jerk functions with polynomial nonlinearity,
some authors [12-14] studied piecewise-linear
jerk functions. For example, Linz and Sprott
made a search for the algebraically simplest
dissipative chaotic flow with a absolute-value
nonlinearity [12]. Using electrical circuits,
Sprott [13, 14] studied the general case
¥ =—A¥ - x+G(x), where G(x) is an
elemental piecewise function. At the same time,
Malasoma [15] investigated a dissipative

chaotic jerk flow with a x%” nonlinearity, which
is parity invariant. Very recently, Patidar and
Sud [16] studied the same family of jerk
dynamical system, but where the nonlinearity is
cubic, quartic, and quintic, and concluded that
increasing the non-linearity does not increase
the range of parameter space over which chaos
occurs.

In this paper, we will focus on the case in

which the nonlinearity is of the form|x |,

which represents a class of simple piecewise
exponential nonlinear jerk systems. The plan of
the paper is as follows: In Section 2, we present
the simple piecewise exponential nonlinear jerk
model and its basic properties. In Section 3, we
describe the dynamics and bifurcations of the
jerk system and present the dynamics in the
parameter space after rescaling the system.
Finally, we summarize the results and indicate
future directions.

2. The simple piecewise exponential
nonlinear jerk model

Consider the so-called simplest dissipative
chaotic flow studied by Sprott [7] for b = 2 in
the generalized form

¥ +ak—| %" +x=0. (1)

Here, a and b are bifurcation parameters.
Equation (1) can be equivalently written as
three first-order ordinary differential equations

x=y, y=z, t=—az+|y’ —x. )

This three-dimensional dynamical system
has only five terms and a single nonlinearity. It
is more general than the simplest dissipative

chaotic flow which involves a quadratic
nonlinearity. The attractor of system (1) is
shown in Fig. 1 for a = 2 and b=1.5. For these
parameters, the Lyapunov exponents are
(0.0256, 0, —2.0256), and the Kaplan-Yorke
dimension is Dgy= 2.0126.
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Fig. 1: Chaotic attractor for system (1) with a =
2 and b=1.5.

The system (1) has the following features:

(i) Tt is the simplest form of a jerk model with
the fewest terms and a single nonlinearity.

(ii) For b = 2, it is the algebraically simplest
dissipative chaotic flow studied in Ref. [7].

(iii) The chaotic range is increasingly narrower
as b increases.

(iv) The attractor size increases exponentially
when b approaches 1, and it is necessary to
linearly rescale the variable x.

(v) It exhibits a period-doubling route to chaos
and is approximately described by a one-
dimensional quadratic map rescaling.

(vi) According to the topological definition by

Van&dek and Celikovsky [17], the
linearization of system (1) about the origin
produces a 3x3 constant matrix of partial
derivatives, 4 =[a; 5.3, in which the sign
of appay; distinguishes nonequivalent

topologies. According to this criterion,
apdy = 0.

1) Dissipation and the existence of an attractor
The rate of volume contraction is given by
the Lie derivative
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V.dt 50

¢1=x’¢2:y1¢3=2' (3)
For dynamical system (2), we obtain

1oy B @

vdt ox oy oz
which can be solved to yield
V)=V (0)e ™. (5)

For a >0, the dynamical system (2) is
dissipative with solutions for ¢ — oo that
contract at an exponential rate a onto an
attractor of zero volume that may be an
equilibrium point, a limit cycle, or a strange
attractor.

2) Equilibria and stability

The equilibria of Eq. (2) can be found by
solving the three equations x = y =2 =0, which
leadto y=0, z=0,and —az+| y|" —x=0.
Therefore, the only equilibrium S;,(0,0,0) is at
the origin.

Linearizing Eq. (2) about the equilibrium
S, provides three eigenvalues, which are
solutions of the characteristic equation

FA) =4 +ar? +1=0. (6)

An elementary study proves that this
polynomial has only one real root 4, <-2a/3,
which is therefore negative for a > 0. Since the
characteristic equation is cubic with real
coefficients, without loss of generality, we have
F(A)=(A=A)A~-A)A-A.) where 1, is a
complex number. After expanding the above
equation and equating the coefficients with

those of the original characteristic equation, we

conclude that Re(4,)=2"142 is positive, and
thus the equilibrium is unstable. The negative
real eigenvalue is associated with a one-
dimensional stable manifold, whereas the
complex conjugate eigenvalues, with positive
real parts, are associated with a two-
dimensional unstable manifold in which
trajectories are spiraling outward. Thus the

origin of the phase space is a saddle-focus with
an instability index of 2.

3. Dynamical behaviors

3.1 Bifurcations and route to chaos

To study the dynamics of system (1), two
cases were considered as follows:
1) Fix b = 1.58, and vary a. The system is
calculated numerically with ae[2.05,2.4] for

an increment of Aa = 0.001. The bifurcation
diagram is shown in Fig. 2(a). With an increase
in the value of the parameter a, a reverse
period-doubling is observed. The. largest
Lyapunov exponent of the system (1) was
computed numerically for the same conditions
and is shown in Fig.2(b). It is evident that chaos
exists for 2.07 £ a £2.14 when b = 1.58.
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Fig. 2: Bifurcation and the largest Lyapunov
exponent of system (1) with parameter a. (step
size: 0.001, » = 1.58, initial conditions:
(10.8058, -2.8207, -4.291)).
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2) Fix a = 2.15, and vary b. The system is
calculated numerically with be[1.50,1.75] for
an increment of Ab = 0.001. The bifurcation
diagram is shown in Fig. 3(a) and (b). With an
increase in b, a period-doubling is observed.
The largest Lyapunov exponent of the system
(1) was computed numerically for the same
range and step size with b and the result is
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shown in Fig.3(c). It is evident that chaos exists
for 1.60 < b <1.63 with a periodic-6 window at
be(1.635,1.645). This window is expanded
with steps of Ab=0.00005 in Fig. 3(d),
showing a period-doubling route to chaos.
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Fig. 3: Bifurcation diagrams of system (1) as a function of b. (step size: 0.001, a = 2.15, initial
conditions: (-1.1706, 0.2984, 0.6057)) (a) b e (1.251.75) (b) b e (1.5,1.75) (c) the largest Lyapunov

exponent of system (1) for b e (1 .5,1.75) (d) details of the periodic window at b e (1.63,1.65).

From the two cases above, one concludes
that selection of appropriate values for the
system parameters can be used to suppress or
generate chaos, and this system and most of the
other cases found by Sprott [2, 7] share a
common route to chaos, i.e. period-doubling
bifurcations.

3.2 Rescaling the system
Since the attractor size increases
exponentially, and the solution of Eq. )

is periodic as b approaches 1 (see Fig. 3),
we can rescale the system by assuming
x=A(l+sinwt). . Then x=Awcoswt,

¥=-Aw? sinwt, and % =—Aw® cos wt .
Substituting these into Eq. (1) gives

— A’ cos ot — aAdw? sin wt— | Aw cos wt |b + %)
Al +sinwt)=0 '

Equating sin @t terms above gives
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w*=1/a. ¥
Averaging Eq. (7) over one cycle, we have
(| Awcos wt Py = (A(1 + sin wt)). 9
Then
40 L [ cost (0)d0 = 4 10
()’ — [ cos =4, (10)
) 2,
lim fmcos ©)dO~2. (11)
Thus we have
Aab %0574, (12)
1
w=[0574778. (13)
From Eq. (8) and Eq. (13), we have
b1
A=(0.57a2)"" | (14)

For example, if a = 2.15 and b = 1.25, then 4 =
41.2644 and x,,,, = 82.5288. This value agrees
roughly with the result shown in Fig.3(a).
1
Let b=1+¢ and y=xel~b =xe7 V¢ then

— /e

X = ye " . Substituting into Eq. (1) gives

J+ap—c|yl +y=0, (15)

where ¢=0.57a%’2. The bifurcation diagrams

of the rescaled system are presented in Fig.4

with the same parameter values and initial

conditions as in Fig.2 and Fig.3.
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Fig. 4: Bifurcation diagrams of system (15)
with different parameters. (a) a e (2.07,2.4), b

= 1.58, step size: 0.001, and IC: (10.8058, -
2.8207, -4.291) (b) be (1.251.75), a = 2.15,
step size: 0.001, IC: (-1.1706, 0.2984, 0.6057).

3.3 Range of chaos and the case of large
nonlinearity

From the calculated results of the
Lyapunov exponent spectrum for different
values of the parameters a and b, we have
characterized the regions of parameter space
where chaos exists. The calculations were
performed using a fourth-order Runge-Kutta
integrator with a variable step size following
the algorithm of Wolf er a/ [18]. For all the
calculations, the parameters are slowly changed
without altering the initial conditions. The
results of the Lyapunov calculations for the
region 1<a<3 and 1<h<3 with a resolution
of 800x800 are shown in Fig.5. The meaning of
different shades of colors are as follows: white
shows unbounded solutions, i.e. non-existence
of any stable attractor, black and grey represent
the existence of chaotic strange attractors and
limit cycles, respectively. The small horizontal
black strip near » = 1.9588 is an island with
bounded dynamics (limit cycles and strange
attractors) located within the unbounded region.
The bifurcation in this island is shown in Fig.6.
A coexisting limit cycle and a chaotic attractor
are also observed in this region.
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Fig. S: Regions of parameter space with
different dynamics (white = unbounded
solutions, gray = limit cycles, black = chaos)
for the simple jerk dynamical system (15).
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Fig. 6: Bifurcation diagram of the island at b =
1.9588, IC: (0.3687, 0.4164, 0.1267).

To understand further the dynamical
behavior of system (15), we investigated the
bifurcations at » =3 shown in Fig. 7(a) by
plotting the return map for successive maxima
of x as shown in Fig. 7(b). The similarity of Fig.
7(a) and Fig. 4 to a Feigenbaum diagram
suggests that the sequence of local maxima
should approximately follow a quadratic map.
At low resolution, the return map appears to be
one-dimensional and strongly resembles a
parabola. The curve is inverted with respect to

the usual.logistic map, and a least squares fit to
a quadratic polynomial gives

Xpe1 =14.3684x2 — 49.8555x, + 44.8524 . (16)

Using  the linear  transformation
x, =-0272y, +1.8709, Eq. (16) can be
transformed  into  the  logistic = map
Y1 =My, (1—y,) with ©=3.9082, which is
well in the chaotic region and slightly below the
crisis at g =4. Thus it is hardly surprising that

the bifurcations and route to chaos resemble
those found in the logistic map.
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Fig. 7: (a) Bifurcations in the region of b =
2.994~3.004, a = 1.655, 1C: (-0.02, -0.05, -
0.06), step size: 0.0005. (b) Return map with
each value of x,, plotted versus the previous
value of X, for a = 1.655, b = 3, IC: (-0.02, -
0.05, -0.06).

As shown in Fig. 5, the range over which
chaos exists becomes smaller as 4 increases. To
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predict the chaos in the limit of infinite b, we
determined the minimum value of a for which
chaos occurs at various values of 4 and initial
conditions for each case as listed in Table 1. An
exponential fit as shown in Fig.8 has the form

Thus we conclude that in the limit of
infinite b, where the nonlinearity approaches a
square well (and the Lyapunov exponent is hard
to calculate), chaos is localized to the vicinity
of a=0.8212. We also studied the case of b less
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00127 than 1, and found it is unbounded for 0 <5 < 1.
a=0.0656¢™" +0.8212. 17

Table 1. Parameters value for chaos at large .

b i LE IC: (o, Yo, 20)
110 0.837 0.0891 (0.4108, -0.5423, 0.4301)
120 0.835 0.0870 (0.8424, 0.5337, -0.3298)
130 0.834 0.0736 (-0.343, -0.2836, 0.3322)
140 0.832 0.0711 (-0.3505, -0.2717, 0.3338)
150 0.831 0.0810 (0.6479, 0.7369, -0.0789)
160 0.830 0.0782 (-0.3374, 0.2991, 0.4374)
170 0.829 0.0744 (-0.2385, 0.3998, 0.3941)
180 0.828 0.0879 (1.3462, 0.0056, -0.9828)
190 0.827 0.0859 (0.9898, -0.7871, -1.1484)
200 0.826 0.0939 (0.8688, 0.5438, -0.3436)
0.845 exponential jerk systems, which can exhibit
chaotic behavior at some values of the system
b parameters. The region of chaos in the
08 parameter space is recognized by using
analytical methods, bifurcation diagrams, and
s 0.835 extensive Lyapunov exponent calculations.
Several results were obtained as follows: (1)
The region of chaos in parameter space is
0.83 narrow. (2) The size of the strange attractor
S expands exponentially as b approaches 1. (3)
0.825 . The system parameters can be used to suppress
19 100 150 200 or generate chaos. (4) The route to chaos of the
b system is by period-doubling bifurcations, and

Fig. 8: Parameter values at which chaos occurs it has the same behavior as in the logistic

" h = at large b, along with the exponential fit in Eq. equation. (5) Increasing the nonlinearity does
05, - (17). not generally lead to more chaos, and the
with chaotic region can be predicted by a fitting
vious function. There are additional interesting
).02, - 4. Conclusions features of this system in terms of control,

synchronization, circuit implementation, and its
application to secure communications that

In this paper, we have investigated the
deserve further study.

Whi%h dynamics of a class of simple piecewise
ses. 10
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