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A num erical search for the sim plest chaotic partial differential equation (PD E) suggests that the

Kuram oto–Sivashinsky equation is the sim plest chaotic PD E w ith a quadratic or cubic nonlinearity

and periodic boundary conditions. W e define the sim plicity of an equation , enum erate all autonom ous

equations w ith a single quadratic or cubic nonlinearity that are sim pler than the Kuram oto–Sivashinsky

equation , and then test those equations for chaos, but none appear to be chaotic. H ow ever, the search

finds severalchaotic, ill-posed PD Es; the sim plest of these, in the discrete approxim ation of finitely m any,

coupled ordinary differential equations (O D Es), is a strikingly sim ple, chaotic, circulant O D E system .

 2009 Elsevier B.V . All rights reserved.

1. Introduction

The sim plest chaotic exam ples of various types of dynam ical

system s are instructive because they reveal chaos’ universal fea-

tures and basic ingredients, since distilling com plicated chaotic

system s dow n to the sim plest one reveals the precious few ele-

m ents essential for chaos.

For exam ple, the quadratic m ap

xn+1 = A − x2n (1)

is the sim plest chaotic m ap w ith a quadratic nonlinearity [1]. (It is

chaotic for A ∈ (1.4011, . . . ,2), except for infinitely m any periodic

w indow s com prising about 10% of the interval.) The “com plexity”

of an equation requires a definition , to be discussed below , but

agreeing that Eq. (1) is the sim plest chaotic m ap is straightforw ard

because it contains the few est possible term s — just tw o — and the

sim plest m onom ial nonlinearity — x2 . D espite its sim plicity, the

quadratic m ap exhibits the general features of m ore com plicated

chaotic m aps, such as the period-doubling route to chaos.

Sim ilarly, the sim plest chaotic flow is
...
x + Aẍ − ẋ2 + x = 0 [2],

w hich w as found by searching all equations that are sim pler than

the Lorenz [3] and Rössler [4] system s. It w as later proved that no

sim pler quadratic flow s are chaotic [5].
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This project perform s a sim ilar search for chaos as in [2] but

for partial (rather than ordinary) differential equations. Searching

for chaos in PD Es, an area not w ell studied in general, is w orth-

w hile because m any of the equations governing the physical uni-

verse are nonlinear PD Es (for an extensive list of nonlinear PD Es

see [6]).

2. Th e search

Before em barking on this project, the sim plest know n chaotic

PD E w as the Kuram oto–Sivashinsky (K S) equation ,

ut = −uux −
1

R
uxx − uxxxx, (2)

w here u = u(x, t) is a real function of space and tim e, and R is

a constant. (H ereafter w e denote partial derivatives by subscripts:

for exam ple, ut ≡ ∂u/∂t , uxx ≡ ∂2u/∂x2 , etc.) The K S equation w as

num erically know n to be chaotic for R = 2, as illustrated in Fig. 1.

O riginally derived to m odel w aves in Belousov–Zhabotinsky re-

actions [7], the K S equation has found a host of other applica-

tions, from flam e front m odulations [8], to instabilities in cellular

flow s [13], to flow s of thin liquid film s (dow n inclined planes [9],

vertical planes [11,12], and vertical colum ns [10]). This m odel

equation for instabilities in physical system s has been extensively

studied analytically (e.g., [14]) and num erically (e.g., [15]).

The astute reader w ill note that the K S equation is odd (that is,

invariant under x → −x,u → −u), but the solution in Fig. 1, w hich

begins w ith an odd initial condition , violates that sym m etry. Chaos
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Fig. 1. Chaos is apparent in this density plot of the Kuram oto–Sivashinsky equation ,

solved here w ith R = 2, 101 coupled O D Es, spatial length L = 101, periodic bound-

ary conditions u(0, t) = u(101, t), and initial condition u(x,0) = 4sin(2πx/101).

The u(x, t) values are plotted on a grayscale, w ith darker corresponding to larger

u(x, t). The largest Lyapunov exponent, evaluated from tim e t = 1.5 × 104 to 105 ,

is 0.028.

is the culprit: a deviation of 10−4 from perfect sym m etry at tim e

zero (w hich equals the num erical m ethod’s accuracy goal) expands

to the size of the system by around tim e 350, in agreem ent w ith

num erical experim ent.

W e searched the space of equations that have the sam e form

as the Kuram oto–Sivashinsky equation . Specifically, w e considered

explicit, autonom ous partial differential equations of the form

ut = F (u,ux,uxx,uxxx, . . .), (3)

w here F (u(x, t)) is a polynom ial in u and its spatial derivatives,

can contain a constant term , and m ust contain a single nonlinear-

ity that is either quadratic or cubic (e.g., u2 , uuxxx , (ux)
3 , etc.). N ote

that m any natural generalizations of the form (3) exist — for ex-

am ple, u(x, t) could be com plex- or vector-valued, there could be

m ore than one spatial dim ension, or ut could becom e utt or uxt ,

etc. — but this study searches the space defined by (3) because it

is sim ple yet suffi ciently vast.

This study considers periodic boundary conditions, rather than

D irichlet, N eum ann or Robin boundary conditions, so the PD Es live

on a ring rather than a line segm ent. Intuitively, periodic boundary

conditions seem m ost likely to perm it chaos because they im pose

the few est constraints.

The goal w as to find equations that are som ehow “sim pler”

than the K S equation yet still chaotic. But first, w hat is the “com -

plexity” of an equation? There is no universal, accepted definition ,

so w e created our ow n, w hich w orks as follow s:

1. Arrange ut on the left-hand side of the equation and all the

other term s on the right-hand side.

2. O n the right-hand side, w rite each pow er as a product (e.g.,

w rite u2 as uu), and count the num ber of term s, the num ber

of appearances of u, and the num ber of appearances of x in

subscripts (i.e., the derivatives).

3. The sum of those three quantities is the com plexity of the

equation .

For exam ple, the term uuxxx w ould add 6 to the com plexity

(1 for being a term , 2 for the tw o u’s, 3 for the three x’s), w hile

the term u(ux)
2 = uuxux w ould add 6 to the com plexity (1 for be-

ing a term , 3 for the three u’s, 2 for the tw o x’s). This definition

enjoys m any virtues: it is easy to program , easy to state in English,

and captures three hum an notions of the com plexity of an equa-

tion: adding term s, increasing pow ers and increasing derivatives all

increase the com plexity.

U sing this procedure, the K S equation has com plexity 14. Enu-

m erating allequations w ith com plexity less than 14 and either one

quadratic or cubic nonlinearity yields 210 quadratic and 163 cubic

equations.

O ther definitions of com plexity exist, of course, and these could

generate different lists of equations that are less com plex than the

K S equation . H ow ever, the equations that w ould be added to or

deleted from the list due to changing the definition of com plex-

ity w ould lie near the boundary betw een inclusion and exclusion;

that is, they w ould have com plexity com parable to that of the K S

equation . The m ajority of the equations in our list — that is, the

sim plest ones — w ould appear in m ost everyone’s list of equations

less com plex than the K S equation .

Tw enty-one equations in the list are redundant in the sense

that differentiating w ith respect to x and letting v ≡ ux yields an-

other equation in the list. H ow ever, elim inating these tw enty-one

equations w ould not buy m uch com putationalsavings, and further-

m ore searching the sam e equation tw ice gives m ore chances to

find chaos.

This study searches for spatiotem poral chaos rather than low -

dim ensional chaos (i.e., purely tem poral or purely spatial chaos).

The periodic boundary conditions preclude purely spatial chaos,

w hile the lack of second-order or greater tim e derivatives for-

bids purely tem poral chaos. Furtherm ore, purely tem poral chaos

w ould require no spatial derivatives, w hich yields only five equa-

tions (ut = u2,u3,1+u2,1+u3,u+u3), allof w hich are first-order

system s and so not chaotic.

To test each equation for chaos, w e com pute its largest Lya-

punov exponent (LLE) [16], the standard test for chaos, w hich

m easures the average exponential rate at w hich nearby initial con-

ditions diverge. If the LLE is positive, then sm all perturbations

grow exponentially in tim e, predictability is lost, and the system

is chaotic.

To calculate the Lyapunov exponent, one repeatedly perturbs

the system and com putes the separation betw een the perturbed

and unperturbed trajectories. These operations are straightforw ard

for finite system s such as m aps and ordinary differential equations

because the state variables are scalars and vectors. H ow ever, the

states of partial differential equations are functions u(x, t), w ith t

fixed and x varying from 0 to the size L of the system . Thus to

com pute separation distances betw een functions, w e convert the

curve u(x, t) into an L-vector by collecting the values at integral

positions in space and then proceed w ith the finite procedure for

calculating the Lyapunov exponent as in [17].

The partial differential equations w ere solved using the built-in

num erical differential equation solver in M athem atica 5.2, w hich

uses the m ethod of lines [18]. Though som e PD Es are better

solved by pseudo-spectral, upw ind, or other num erical m ethods,

the form idable scope of this search requires a general-purpose

m ethod such as the m ethod of lines, w hich can effi ciently solve

a large class of initial value problem s.

The periodic boundary conditions im ply that u(0, t) ≡ u(L, t)

for som e fixed L (and the spatialderivatives m atch at the boundary

as w ell), so one can im agine the PD E as a ring of O D Es — infinitely

m any of them , each coupled to its nearest neighbors. The num eri-

cal m ethod discretizes space using a tensor product grid of at least

101 O D Es, approxim ates spatial derivatives using fourth-order fi-

nite differences, and adapts the tem poral step size to satisfy the

absolute and relative error goals of 10−4 each.

W e solve each equation out to tim e t = 8000 (quadratic) or t =
5000 (cubic), long enough for solutions converging to a fixed point

or to infinity to be easily recognized and discarded. Such m ethods

cut m onths off the search because they quickly reject non-chaotic

equations before laboriously com puting their LLE.

W e evaluate the LLE from t = 7000 to t = 8000 (quadratic)

or from t = 4000 to t = 5000 (cubic). Ignoring the first 7000
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(quadratic) or 4000 (cubic) tim e units helps to ensure that the sys-

tem is on its attractor rather than approaching it, w hich could give

spurious results (transient chaos).

Each candidate equation contains betw een one and five term s

(not counting ut ), each of w hich is m ultiplied by a real coeffi cient.

Fortunately, a suitable linear rescaling of u and t norm alizes tw o of

the coeffi cients to ±1, a trick that significantly reduces the num ber

of possible coeffi cients. For exam ple, an equation w ith 3 term s has

tw o coeffi cients that are ±1, and the third can be any realnum ber;

this third coeffi cient is like a “knob” that w e turn .

The question becom es: w hat values do you try for the “knobs”?

The coeffi cients should be w ithin a few orders of m agnitude of

each other, for otherw ise the term s w ith com paratively tiny coeffi -

cients hardly affect the system , so they add unnecessary com plex-

ity to the equation . Thus w e let each coeffi cient random ly sam ple

hundreds of values in a uniform logarithm ic distribution from 10−2

to 102 , and for each value w e also try its negative.

The coeffi cients are not the only param eters to tune: the initial

condition u(x,0) can be varied, as w ell. If an equation is chaotic

and dissipative, there exists a “basin of attraction ,” a region of ini-

tial conditions such that the solution is chaotic w henever the ini-

tialcondition lies in its basin of attraction . Therefore, if a candidate

equation is chaotic, the com puter search m ust test that equation

using an initial condition in its basin of attraction . Like fisherm en

casting a large net, w e try dozens of initial conditions, hoping at

least one lies in the basin of attraction (provided it exists). (N ote

that conservative system s have no basin of attraction but instead a

“chaotic sea,” although the idea is the sam e, except that there are

no transients.) In particular, w e tried initial conditions of the form

u(x,0) = A sin

(

2π

P

x

L

)

+ V , (4)

w here L is the circum ference of the ring (w e tried all prim es be-

tw een L = 2 and L = 29), P is the period (w e tried P = 1
2
, 1, 2),

V is the vertical offset (w e tried 7 roughly evenly spaced values

betw een −1 and 1, including 0), and the am plitude A is fixed

at 1. N ote that initial conditions w ith P = 2 have a discontinuous

derivative at x = 0, a virtue since it expands the types of initial

conditions used in the search. The exact form of the initial con-

dition is not too im portant since the system eventually finds its

attractor provided that the initial condition lies in the basin of

attraction (if the equation is dissipative) or chaotic sea (if the equa-

tion is conservative).

3. R esults ofth e search

W e ran this search on a 2 G H z dual-core CPU for 16 m onths,

trying thousands of coeffi cients and initial conditions for each of

the 373 candidate equations, yet w e found no chaotic solutions.

Furtherm ore, the search successfully detects chaos — testing the

K S equation w ith spatial length L = 19 finds 80 chaotic solutions

— so it is unlikely any of the candidate equations are chaotic.

The follow ing exam ples illustrate the behavior of the 373 equa-

tions in the search.

Exam ple 1. The equation

ut = ±u ± u3 + cuxxx (5)

typifies the behavior of 90% of the 373 equations in the search.

The solutions either

• decay to the attracting “fixed point” u ≡ 0,

• diverge to infinity,

• or are periodic (i.e., a traveling w ave)

in approxim ately a 2:1:1 ratio. The behavior of Eq. (5) depends

on the signs of the first tw o term s. If the sign of u is negative,

Fig. 2. Traveling w ave behavior of ut = u − u3 + uxxx

Fig. 3. Shocks, or w aves w ith steep w avefronts, quickly form in the solution to Burg-

ers’equation , w hich is not chaotic.

then the system is dam ped and decays to u ≡ 0 because there

is no energy input. O n the other hand, if the signs are +u + u3 ,

nothing dam ps the energy input, so solutions diverge to infinity,

w hereas the signs +u − u3 lead to a traveling w ave w ith velocity

and shape determ ined by the constant c (see Fig. 2). The search

m ethod quickly detects behavior of the first tw o types, and the

calculated largest Lyapunov exponent for the third type is zero.

Exam ple 2. W hereas Eq. (5) can diverge to infinity because the en-

ergy increases w ithout bound, other equations diverge to infinity

because singularities form in the derivative ux . For exam ple, Burg-

ers’equation [19]

ut = ±uxx ± uux (6)

is an integrable system that exhibits shocks, propagating w aves

w ith steep w avefronts, as show n in Fig. 3. About 8% of the

373 equations in the search exhibited behavior of this type, and

som etim es the w avefront becom es so steep that ux becom es un-

bounded. The search m ethod quickly recognizes and discards equa-

tions that form such singularities.

Exam ple 3. The rem aining 2% of the candidate equations are the

m ost interesting and exhibit behavior sim ilar to that of the system

ut = (ux)
3, (7)

w hich is a chaotic PD E w ith a com plexity of 7 (half that of the K S

equation). U nfortunately, Eq. (7) is ill-posed, as explained below .

N ot surprisingly, equations w ith a sim ilar form as Eq. (7) — nam ely,

a product of three odd-degree derivatives (of w hich there are six:

(ux)
3 , (ux)

2uxxx , ux(uxxx)
2 , uxuxxxuxxxxx , (ux)

2uxxxxx , (ux)
2uxxxxxxx)

— all appear to be chaotic but ill-posed like (7).
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Fig. 4. Short w avelength behavior at the level of the spatial discretization is appar-

ent in the solution of ut = (ux)
3 at tim e t = 10 000, approxim ated here using 201

O D Es.

Fig. 5. A density plot of ut = (ux)
3 solved w ith 201 O D Es show s the short w ave-

length behavior at the level of the spatial discretization , w hich appear as parallel,

horizontal bands resem bling corduroy.

Eq. (7) is ill-posed because the energy cascades to the short-

est w avelength equal to tw ice the spacing used by the num erical

m ethod. That is, if the num erical m ethod approxim ates the PD E as

N coupled O D Es, and the spatiallength of the system is L, then the

shortest possible w avelength is 2L/N — precisely the w avelength

at w hich energy accum ulates. As show n in Fig. 4, the solution

oscillates betw een high and low values at successive spatial lo-

cations. This pathological behavior is also apparent in the density

plot in Fig. 5, w here the short w avelength behavior at the size of

the spatial discretization looks like corduroy superim posed on di-

agonal striations.

Crucially, in the PD E lim it of increasing fineness of the spatial

grid, the energy goes to shorter w avelengths in lockstep w ith the

spatialgrid because there is no hyperviscosity term (such as −uxxxx

in the K S equation) to dam p short w avelengths. To quantify this

relationship, w e exam ined Eq. (7) as a system of N coupled O D Es

u1(t), . . . ,uN (t) evolving w ith periodic boundary condition accord-

ing to

dui

dt
= γ (ui+1 − ui−1)

3, (8)

w here γ ≡ (N/2L)3 . To see w hy Eq. (8) approxim ates the PD E (7),

observe that for N O D Es on a ring of length L, the spacing is L/N ,

so the first spatial derivative is approxim ately

dui

dx
≈

ui+1 − ui−1

2L/N
,

Fig. 6. The energy E(k) as a function of the w avenum ber k ≡ 202/λ for the ill-

behaved coupled O D E system (8) illustrates the energy piling up at the shortest

w avelengths (highest k). This curve is the square of the m odulus of the discrete

sine Fourier transform of the solution to Eq. (8), averaged from tim e 3000 to 5000,

and connected by lines.

Fig. 7. The spectral density for the discrete approxim ation of the Kuram oto–

Sivashinsky equation show s w hy it is w ell-behaved: the energy is concentrated at

long and interm ediate w avelengths and thereafter decays exponentially w ith in-

creasing w avenum ber (decreasing w avelength). This curve is com puted in the sam e

w ay as in Fig. 6.

the cube of w hich is the right-hand side of (8). Therefore, to exam -

ine how Eq. (7) m isbehaves as a PD E, w e explore how its discrete

approxim ation (8) depends on the spatial step size 1x ≡ L/N by

varying the coeffi cient γ .

The spectraldensity of the solution to Eq. (8) confirm s our intu-

ition that the energy piles up in the shortest w avelength (highest

w avenum ber k ≡ 202/λ ). As show n in Fig. 6, the energy is con-

centrated at the shortest and longest w avelengths and scarce at

interm ediate w avelengths. Contrast this w ith the corresponding

plot for the K S equation in Fig. 7; for this w ell-behaved equation

the energy is concentrated at interm ediate w avelengths and negli-

gible at the sm allest w avelength.

In addition to the energy cascading to the shortest w avelength,

the largest Lyapunov exponent of the coupled O D E system (8) also

indicates w hy its PD E lim it (7) is ill-behaved. By dim ensional anal-

ysis, the LLE is proportional to A2γ , w here A is the am plitude

of the initial condition . Experim ental verification of LLE ∝ γ is

show n in Fig. 8, and w e have sim ilarly verified the proportional-

ity w ith A2 .

That the LLE and γ are proportional suggests the LLE becom es

infinite in the PD E lim it of infinite γ . Although linearly rescaling

t or u appears to resolve this issue by m aking the LLE finite and

w ell-defined, such a rescaling leads to m ore issues, further evi-

dence that Eq. (7) is pathological. For instance, rescaling tim e ac-

cording to τ ≡ γ t elim inates γ from the right-hand side of Eq. (8),

but now the dynam ics occur γ tim es m ore quickly. Thus the en-

ergy piles up at the shortest w avelengths in space and in time.

Alternatively, one could linearly rescale u according to v ≡ u
√

γ ,

or equivalently reduce A by
√

γ ; but this im plies that for the
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Fig. 8. The largest Lyapunov exponent increases as 0.024(N/L)3.02 , consistent w ith

the expectation that the relationship is cubic. H ere w e solved Eq. (8) using N = 101

O D Es, fixed the am plitude A of the initial condition at 4, and evaluated the LLE

from tim e 105 to 1.5× 105 .

PD E (7) to have a w ell-defined LLE the initial condition m ust be

identically zero. Thus no m atter how γ is elim inated by rescaling

t or u, the coupled O D E system is ill-behaved in the PD E lim it.

The equation ut = (ux)
3 along w ith the five other equations

m entioned above all appear to exhibit the sam e behavior: they are

chaotic but suffer from pathological behavior at the shortest w ave-

lengths, and no rescaling appears to salvage them .

4. Conclusion

The results of this com puter search suggest that the Kuram oto–

Sivashinsky equation is the sim plest chaotic autonom ous PD E w ith

a single quadratic or cubic nonlinearity. H ow ever, this result is not

definitive: an equation could have a tiny w indow of coeffi cients

and region of initial conditions that yield chaos. In fact, finding

chaos in conservative system s is especially diffi cult because chaotic

seas (the regions of initial conditions that yield chaotic solutions)

can be tiny. H ow ever, the basins of attraction of dissipative system s

are usually large. Since 322 of the 373 candidate equations (86%)

are dissipative, this null result has a high degree of certainty for

nearly all of the equations.

The fact that no sim pler equations w ere found to be chaotic has

im plications for the K S equation . Each of its term s, for exam ple, is

vital for chaos: energy enters the system at long w avelength via

uxx , cascades to short w avelength due to the nonlinearity uux , and

dissipates via uxxxx . The absence of any of these three term s elim -

inates the perpetual, aperiodic m ovem ent of energy around the

system .

Furtherm ore, sim plifying term s in the K S equation elim inates

the chaos. It is tem pting, for instance, to replace the dissipation

−uxxxx w ith a sim pler dissipation such as −u, but such a sim plifi-

cation destroys the chaos.
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