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This paper describes a world in which Newton’s first and second laws hold, but Newton’s third law
takes the form that the forces between any two objects are equal in magnitude and direction. The
dynamics for such a system exhibit curious and unfamiliar features including chaos for two bodies
in two spatial dimensions. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

Consider a world in which Newton’s first and second laws
hold, but where Newton’s third law takes the form that the
forces between any two objects are equal in both magnitude
and direction. We will refer to such a world as “anti-
Newtonian,” although that term has also been used to de-
scribe a general relativistic universe with a purely gravito-
magnetic field.1 Violations of Newton’s third law are not
uncommon and occur, for example, in the forces between
moving charges when retardation effects are considered.2,3

An anti-Newtonian force pair is unusual, but it might ap-
proximate some biological processes such as a spatial
predator-prey problem in which the fox is attracted to the
rabbit, but the rabbit is repelled by the fox. It is useful to
study such a model not only for its pedagogical value in
understanding the role of Newton’s third law in classical
mechanics4 but also because there may be situations outside
of physics where such a model is sensible.

II. TWO-BODY, ONE-DIMENSIONAL MOTION

For the simplest example, consider the interaction of two
bodies with masses mr and mf in one dimension. The sub-
scripts are chosen to represent rabbits and foxes as a mne-
monic to aid in distinguishing the mass that is repelled from
the one that is attracted because the symmetry to which we
are accustomed is lacking. Assume that the force between
them depends only on their separation r=xr−xf according to
some power �. Such a force law allows a wide range of
familiar situations including square well ��→��, springlike
��=1�, constant ��=0�, inverse square ��=−2�, and hard
sphere ��→−��. From Newton’s second law, we have

mrẍr = r�r��−1, �1�

mfẍf = r�r��−1, �2�

where without loss of generality, we have absorbed into the
masses any multiplicative constant in the force by expressing
the masses �assumed positive� in suitable units. These equa-
tions differ from conventional Newtonian dynamics only by
the fact that the right-hand sides are equal rather than oppo-
site.

An alternate and equivalent description is to take one of
the masses as negative, in which case Newton’s third law
holds, but Newton’s second law then implausibly predicts
that the body with a negative mass accelerates in a direction
opposite to the applied force. Furthermore, such a descrip-
tion would lead to negative kinetic energies and other diffi-

culties that make such a description conceptually unappeal-
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ing. The dynamics of objects with negative mass has been
studied5,6 usually in the context of their gravitational interac-
tion.

If we combine Eqs. �1� and �2�, the separation r obeys the
differential equation

r̈ = � 1

mr
−

1

mf
�r�r��−1, �3�

which can be easily integrated to obtain a relation between
the relative velocity v= ẋr− ẋf and the separation given for
��−1 by

v2 = v0
2 +

2�mf − mr�
�� + 1�mrmf

�r�+1 − r0
�+1� , �4�

where v0 and r0 �assumed positive� are the initial relative
velocity and separation, respectively. The case �=−1 is spe-
cial because the second term in Eq. �4� becomes zero divided
by zero. The integration for this case leads to the result

v2 = v0
2 +

2�mf − mr�
mrmf

ln
r

r0
. �5�

To acclimate to the peculiar properties of this system, con-
sider the following cases.

A. mr�mf

Consider the case in which the rabbit is less massive �and
hence more mobile� than the fox. For ��−1 the right-hand
sides of Eqs. �4� and �5� are positive for large r and, thus, the
relative velocity increases without limit as r increases, result-
ing from a force that does not diminish rapidly enough as the
separation increases to keep the work done by the force
bounded. The rabbit outruns the fox, and their separation
approaches infinity with an infinite relative velocity.

For ��−1 �as, for example, an inverse square-law force�,
the separation also approaches infinity but with a finite rela-
tive velocity given by

v� =�v0
2 −

2�mf − mr�
�� + 1�mrmf

r0
�+1. �6�

In both cases the system is unbounded, and the rabbit outruns
the fox.

B. mr=mf

More interesting is the case in which the rabbit and fox are
equally mobile �mr=mf 	m�, for which Eq. �4� predicts that
their relative velocity is conserved �v=v0�, independent of �.

If they are initially at rest relative to one another �v0=0� with
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a separation of r0, they both obey the same equation of mo-
tion and accelerate together, like one race car pacing another,
and they maintain a constant separation as their individual
velocities approach infinity according to vr=v f =r0

�t /m.
It is evident that neither energy nor momentum is con-

served in this interaction, nor does the center of mass move
with constant velocity. Each mass does positive work on the
other, with the rabbit pulling the fox and the fox pushing the
rabbit. Such a violation of fundamental conservation laws is
impossible with inert objects, but biological objects can gen-
erate the needed energy through metabolism, and the mo-
mentum comes from friction with the ground across which
they are running. This example also illustrates the need for
additional forces to keep the velocities bounded.

C. mr�mf

Consider the case where the rabbit is less mobile �more
massive� than the fox �perhaps the prey is a lamb rather than
a rabbit�, in which case we expect the fox to catch the prey.
From Eq. �3� the acceleration is directed opposite to the dis-
placement, which implies that r will eventually reach zero.
For ��−1 the fox reaches the rabbit in a finite time moving
with a relative velocity given by

v f =�v0
2 +

2�mr − mf�
�� + 1�mrmf

r0
�+1. �7�

If the rabbit was penetrable, the fox would overshoot and
execute a periodic oscillation of constant amplitude, an ex-
ample of which is the simple harmonic oscillator given by
Eq. �3� with �=1. For ��−1 the relative velocity as given
by Eq. �4� at r=0 is infinite, as with an object falling into an
infinitely dense black hole.

D. Collisions

It is clear that if the relative velocity between the rabbit
and the fox is sufficiently negative �they approach one an-
other sufficiently fast�, a collision is possible. It is instructive
to consider collisions in which the impulse I causes the mo-
mentum of each mass to change by the same rather than
opposite amounts as required by the anti-Newtonian assump-
tion,

I 	
 Fdt = mr�vr = mf�v f . �8�

In such a collision neither energy nor momentum is con-
served, although there is a relation between the initial and
final velocities. Without loss of generality, consider a coor-
dinate system in which the rabbit is initially at rest at x=0
and the fox is moving toward the rabbit with an initial ve-
locity of v0. From Eq. �8� the respective velocities after the
collision are related by

mfv f − mrvr = mfv0. �9�

The simplest situation is the perfectly inelastic collision in
which vr=v f 	v, for which we obtain

v =
mfv0

mf − mr
. �10�

The limits mr /mf →0 and mr /mf →� are reasonable; in the
former case leading to the fox catching the rabbit and the two

continuing to move with velocity v0, and in the latter case
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with the fox and rabbit coming to rest. Intermediate cases are
bizarre, with the velocity switching from +� to −� at mr
=mf. What happens is that when the rabbit is infinitesimally
less massive than the fox, their relative velocity just before
the collision is zero, and they chase each other with ever
increasing speed before eventually colliding. In contrast, if
the rabbit is infinitesimally more massive than the fox, the
fox slightly overshoots the rabbit and they both reverse di-
rection and begin a prolonged chase in the backward direc-
tion, something like Wile E. Coyote trying to catch the Road
Runner.

In an elastic collision the work done on the two bodies
ordinarily is equal and opposite so that the total kinetic en-
ergy is conserved. The analogous condition for an anti-
Newtonian elastic collision is for the work done on the two
bodies to be equal but not opposite so that they both gain an
equal kinetic energy. For the case where the fox is moving
with an initial velocity of v0 and the rabbit is at rest, the
velocities after the collision are related by

W 	
 Fdx =
1

2
mfv f

2 −
1

2
mfv0

2 =
1

2
mrvr

2. �11�

If we combine this condition with Eq. �9�, we obtain

v f = v0�1 +
2mr

mf − mr
� , �12�

vr = v0�2 +
2mr

mf − mr
� . �13�

As with the inelastic collision, the velocities of both bodies
approach infinity when their masses are equal. Furthermore,
the velocities approach infinity if mr�mf or if ��−1.5 be-
cause the net work done in those cases is infinite.

E. Dissipative case

The infinite velocities and continual input of energy sug-
gest the need for a dissipative force to produce more realistic
behavior. Consider the situation where the equations of mo-
tion are given by

mrẍr = r�r��−1 − brvr, �14�

mfẍf = r�r��−1 − bfv f , �15�

in which the −bv terms represent viscous drag, perhaps re-
sulting from air resistance or friction with the vegetation
through which the rabbit and fox must move.

Now the equations are of sufficient complexity that we
resort to numerical solutions in anticipation of even more
complicated examples to follow. In particular, we look for
bounded solutions that are periodic or perhaps even chaotic.

The most complicated solution in one spatial dimension
found in an extensive search is a limit cycle, one example of
which is for mr=mf =1, br=2, bf =1, and �=0, as given in
Fig. 1. The initial conditions are not critical but are chosen as
xr=0.4, xf =0.5, ẋr=0, and ẋf =0.3 to be close to the attractor.
Note that the fox continually overshoots the rabbit before
they decelerate and resume the chase in the opposite

direction.
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III. TWO-BODY, TWO-DIMENSIONAL MOTION

If the bodies are free to move in two spatial dimensions, as
the rabbit and fox would be over real horizontal terrain, more
interesting dynamics are possible.

A. Conservative case

In the absence of friction, bounded dynamic solutions are
possible only if the average net work done on the bodies is
zero. The simplest way to arrange this case is to have the
bodies orbit synchronously in concentric circles so that the
force is radial and hence perpendicular to the velocity. For
example, if the fox has half of the mass of the rabbit and
orbits at twice the radius �Rf =2Rr�, then the force on them is
equal and is given by F=mr�

2Rr=mf�
2Rf if they have the

same angular velocity �. This result is independent of �
because their separation r=Rf −Rr is constant.

There is another solution with more complicated orbits in
which the positive work done on the system when the fox is
in pursuit of the rabbit is just balanced by the negative work
done after the fox overshoots the rabbit. One such example
has mr=2, mf =1, and �=−1, which gives the quasiperiodic
trajectories shown in Fig. 2. Initial conditions are taken as
�xr ,yr , ẋr , ẏr ,xf ,yf , ẋf , ẏ f�= �1,0 ,0 ,1 ,2 ,0 ,0 ,2�. The rabbit
and fox are in synchronous, precessing orbits that periodi-
cally intersect, although there are also similar nonintersect-
ing solutions. An animation of this case, as well as others in
this paper, is available.7

B. Dissipative case

In the presence of friction, other interesting two-
dimensional dynamics are possible. The equations that de-
scribe the motion are given by

ẍr = ��xr − xf�r�−1 − brẋr�/mr, �16�

ÿr = ��yr − yf�r�−1 − brẏr�/mr, �17�

¨ �−1 ˙

Fig. 1. Limit cycle of a rabbit and a fox in a one-dimensional chase.
xf = ��xr − xf�r − bfxf�/mf , �18�
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ÿ f = ��yr − yf�r�−1 − bfẏ f�/mf , �19�

where r=��xr−xf�2+ �yr−yf�2 is now the Euclidean distance
between the bodies.

Not only are limit cycles possible but the quasiperiodic
trajectories can also be attracted to a torus. One such ex-
ample has mr=1, mf =2, br=1, bf =0.1, and �=−1, which
gives the trajectories shown in Fig. 3. The initial conditions
are not critical but are taken as �xr ,yr , ẋr , ẏr ,xf ,yf , ẋf , ẏ f�
= �1,1 ,−0.1,0 ,9 ,3 ,0 ,0.4� to be close to the attractor. The
rabbit and fox are in synchronous, slowly precessing orbits

Fig. 2. Quasiperiodic trajectory of a rabbit and a fox in a two-dimensional
chase with no dissipation.

Fig. 3. Quasiperiodic trajectory of a rabbit and a fox in a two-dimensional

chase with dissipation.
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with the closest approach on each pass with a value of r
=1.637 298. Although Figs. 2 and 3 are similar, the former is
an invariant torus whose size depends on the initial condi-
tions, while the latter is an attracting torus whose size is
independent of the initial conditions �within the basin of at-
traction�.

Chaotic solutions are also possible. One such example has
mr=0.5, mf =1, br=2, bf =1, and �=−1, which gives the tra-
jectories shown in Fig. 4. The initial conditions are not criti-
cal but are taken as �xr ,yr , ẋr , ẏr ,xf ,yf , ẋf , ẏ f�= �0.3,24,0 ,0 ,
−0.2,47,0 ,0� to be close to the strange attractor.

This unusual attractor deserves some comment. To a first
approximation, the rabbit and fox oscillate back and forth
along a line as in the case with one spatial dimension. The
fox overtakes the rabbit on the outbound leg but misses
slightly, passing either to the right or left of the rabbit by a
nearly constant distance of r�0.01. Then they both slow
nearly to a halt and resume the chase in the opposite direc-
tion, but rotated by a bit less than 6° in the plane because of
their nearly equal deflection during the close encounter. The
trajectory would exhibit a regular precession except for the
fact that the sequence of right and left passings is apparently
chaotic and has properties indistinguishable from a sequence
of coin tosses, causing the orbit to walk randomly in angle,
making the system ripe for analysis by symbolic dynamics.8,9

IV. THREE-BODY, TWO-DIMENSIONAL
MOTION

The next level of complexity involves three bodies mov-
ing in two dimensions. Because of the asymmetry of the
situation, there are two cases to consider—two foxes chasing
one rabbit and one fox chasing two rabbits. The two bodies
of the same species are assumed not to interact with one

Fig. 4. Chaotic trajectory of a rabbit and a fox in a two-dimensional chase
with dissipation.
another.
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A. Two foxes and one rabbit

In the frictionless case the simplest bounded dynamic so-
lutions for two foxes chasing one rabbit have the foxes or-
biting synchronously in circles concentric with the circle on
which the lone rabbit orbits. The trivial solution has the
foxes on top of one another and moving as a single mass as
in the two-body case. The foxes can also move in concentric
circles of different radii outside of and in phase with the
rabbit provided that mrRr=mf1Rf1+mf2Rf2, independent of �.
There is another solution with the first fox in a concentric
circular orbit outside the rabbit and in phase with it and the
second fox in a smaller concentric circular orbit and 180° out
of phase with the other two provided that mrRr=mf1Rf1
−mf2Rf2, independent of �. There are also solutions resem-
bling Fig. 2 with the two foxes on top of one another.

In the presence of friction there are not only unbounded,
periodic, and quasiperiodic solutions but also chaotic solu-
tions for the case of two foxes chasing one rabbit even when
the foxes have identical masses and friction. Figure 5 shows
the motion of the rabbit for one such case with mr=1,
mf =2, br=3, bf =1, and �=−1. The trajectories of the foxes
are similar except that they cover more ground, but they
are omitted from the figure to keep it uncluttered. The
initial conditions are not critical but are taken
as �xr1 ,yr1 , ẋr1 , ẏr1 ,xf1 ,yf1 , ẋf1 , ẏ f1 ,xf2 ,yf2 , ẋf2 , ẏ f2�= �0.5,1 ,
0 ,0 ,1 ,0.1,−0.4,0.4,0 ,2 ,0.4,0� to be close to the strange
attractor, which resides in a 12-dimensional phase space. The
largest Lyapunov exponent10 for this case is 	=0.1346. It is
remarkable how different and more complicated is the trajec-
tory from that shown in Fig. 4 when the second fox is intro-
duced.

B. Two rabbits and one fox

For one fox chasing two rabbits without friction, the sim-
plest bounded dynamic solutions have the fox orbiting syn-

Fig. 5. Chaotic trajectory of a rabbit being chased by two identical foxes
with dissipation.
chronously in a circle outside of and concentric with the
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circles on which the rabbits orbit. The trivial solution has the
rabbits on top of one another and moving as a single mass as
in the two-body case. The rabbits can also move in concen-
tric circles of different radii inside the fox’s radius and in
phase with it provided that the fox has a mass sufficient that
mfRf =mr1Rr1+mr2Rr2 can be satisfied with all R’s positive
and Rf greater than the larger of Rr1 and Rr2, independent of
�. There is no out-of-phase solution for the rabbits because
all the forces must be radially inward. However, there are
solutions resembling Fig. 2 with the two rabbits on top of
one another.

In the presence of friction the usual situation for one fox
chasing two rabbits is for at least one of the rabbits to escape
to infinity while the fox is preoccupied with chasing the
other, in which case the problem reduces to the two-body
case. If the domain is bounded, more interesting solutions
can occur, but then the size of the domain and the boundary
conditions would come into play. Another possibility is to
introduce a second fox, but there would still be a tendency
for one of the rabbits to escape or for the motion to decouple
into two spatially separated two-body problems with a dif-
ferent fox in pursuit of each rabbit.

V. DISCUSSION

In comparison with gravitational or Coulomb interactions,
anti-Newtonian systems have much richer dynamics even
with only two bodies in two spatial dimensions. In particular,
they admit chaos and strange attractors because they are not
constrained by energy and momentum conservation. With
three bodies, chaos is even more common, suggesting that it
might be the rule in the many-body limit.

Logical extensions of this work include studies of more
than three bodies in three spatial dimensions, for example, to
model how a swarm of prey might react to an attacking
predator,11 perhaps in a bounded domain, and to explore the
regions of parameter space over which the various kinds of
dynamics occur. Bodies of the same type could be taken to
interact by conventional Newtonian forces,12 perhaps with
something like a van der Waals force13 to model the tendency
of the predators to hunt in packs and for the prey to flock
together, thereby keeping their motion bounded.

The large velocities that often occur suggest the need for
something like an “anti-Einsteinian” theory of special
relativity,14 perhaps with a much smaller limiting velocity in
keeping with the biological examples to which it might
apply.
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Even more speculatively, the bound states, especially
those in which the foxes encircle the rabbit without damping,
suggest the possibility of an “anti-Bohr” atom15 in which the
forces are anti-Newtonian and the angular momentum is
quantized. An electron and a proton could orbit synchro-
nously in the presence of anti-Newtonian forces if the radius
of the proton’s orbit was smaller than that of the electrons by
their mass ratio, which is not too different from the situation
in a real atom. With the addition of something like a Pauli
exclusion principle, an “anti-Periodic Table of the elements”
might be concocted.

Such cases are almost completely unexplored and are of
possible interest as biological models even if they are other-
wise nonphysical. They have considerable pedagogical value
and constitute excellent student projects.
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