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During quiet standing, the human body continuously moves about an upright posture in an
erratic fashion. Many researchers characterize postural fluctuations as a stochastic process while
some others suggest chaotic dynamics for postural sway. In this study, first we examined these
assumptions using principles of chaos theory in normal healthy and in patients with deteriorated
postural control mechanisms. Next, we compared the ability of a nonlinear dynamics quanti-
fier correlation dimension to that of a linear measure standard deviation to describe variability
of healthy and deteriorated postural control mechanisms during quiet standing. Our findings
did not provide convincing evidence for existence of low dimensional chaos within normal and
abnormal sway dynamics but support the notion that postural fluctuations time series are distin-
guishable from these generated by a random process. The results indicated that although linear
variability measures discriminated well between groups, they did not provide any information
about the structure of postural fluctuations. Calculated correlation dimension as a complexity
measure which describes spatio temporal organization of time series may be useful in this regard.
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1. Introduction

Balance control during quiet standing is one
of the essential activities that human being
learn in childhood and perform at subconscious
level. Despite its apparent simplicity, the task of
maintaining an upright posture involves a complex
sensorimotor control system. Various mechanisms
and neurophysiologic sensory systems including
visual, vestibular, and somatosensory systems con-
tribute to our stability during quiet standing
and respond to internal or external perturbations
[Shumway-Cook & Woollacott, 2006].

The complex behavior of standing still postural
control mechanism have been studied using differ-
ent mathematical linear and nonlinear quantifiers
to characterize postural sway, to study influences
of different factors on postural steadiness and to
detect differences in postural control mechanisms.
Many researchers have used linear posturographic
measures and summary statistics of center of pres-
sure (COP) time series, which by definition ignore
temporal structure of time series, to analyze postu-
ral sway during quiet standing [Nichols et al., 1995;
DeHaart et al., 2004; Norris et al., 2005; Raymakers
et al., 2005; Blaszczyk et al., 2007; Esteki et al.,
2009]. Highly irregular outputs of postural control
system, as illustrated in Fig. 1, make it a candidate
for physiological chaos.

It has been suggested that the complex and
unpredictable behavior exhibited by sensorimotor
control system may be instances of deterministic
chaos and many authors claimed the existence of
chaos in human postural control [Yamada, 1995;
Pascolo et al., 2005; Ladislao & Fioretti, 2007] while
some others believe that this is a random correlated
noise [Collins & Luca, 1993; Duarte & Zatsiorsky,
2000; Amoud et al., 2007]. Newell et al. [1993] used
correlation dimensions of COP trajectories as the

Fig. 1. Left panel: a typical 20 seconds COP trajectory where x and y respectively correspond to mediolateral and anterior
posterior directions. Right panel: corresponding time series.

dimensionality quantifier to evaluate stability of
normal subjects and tardive dyskinetic (TD) adult
patients during quiet standing. They found low
dimensional attractors within COP dynamics and
COP trajectories of TD patients were of a lower
dimension than that produced by normal subjects.
Same as Newell et al., Yamada [1995] found low
dimensional chaotic attractors for COP fluctuations
during quiet standing of normal subjects (Fig. 2)
and calculated largest Lyapunov exponents. The
calculated Lyapunov exponents were consistently
greater than zero. Thus, Yamada concluded that
there is a chaotic regime within human postural
control.

Ladislao and Fioretti [2007] investigated the
effect of different visual conditions on postural
steadiness time series of normal subjects along ante-
rioposterior (AP) direction using traditional linear
posturographic measures and nonlinear dynamical
system quantifiers. They assumed chaotic attractors
within standing postural control system and then
calculated largest Lyapunov exponents. They found
positive values for largest Lyapunov exponents and
claimed that postural control system demonstrates
a weakly chaotic behavior. Their three-dimensional
reconstructed embedding space was the same as
that found by Yamada. In another literature,
Pascolo et al. [2005] used correlation dimension and
largest Lyapunov exponent to distinguish healthy
subjects from Parkinsonians. They claim that pos-
tural control system is indeed chaotic and found low
dimensional attractors for sway dynamics in both
groups. Their estimated dimensions suggest attrac-
tors closer to limit cycle attractors with poten-
tially some noise. They also calculated positive
Lyapunov exponents for both healthy subjects and
Parkinsonians. However their analysis could not
discriminate healthy subjects from Parkinsonians.
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Fig. 2. Three-dimensional embedding space of a sample
COP time series. Figure is adapted from [Yamada, 1995].

Roerdink et al. [2006] with the aim of unravel-
ing standing postural control mechanism reanalyzed
the COP data of Dehaart’s study [2004] using non-
linear dynamical system quantifiers and other com-
plexity measures. They did not explicitly claim that
any chaotic nature exists behind the postural con-
trol system but they interpreted correlation dimen-
sions as the number of active dynamical degrees
of freedom and largest Lyapunov exponents as the
postural instability criterion. Their findings indi-
cated that stroke patients recruit additional con-
trol processes during quiet standing and are more
locally instable. Donker et al. [2007] investigated
the influence of attention on dynamical structure
of postural sway of young healthy adults using a
variety of linear and nonlinear measures. Same as
Roerdink et al., they interpreted correlation dimen-
sion and largest Lyapunov exponent as the criteria
for evaluating dimensionality and local stability of
postural sway.

The results of these studies indicate that these
authors found low dimensional chaotic attractors
in postural fluctuations, and then they calculated
Lyapunov exponents to evaluate behavior of trajec-
tories nearby the attractors. For short noisy time
series, the aforementioned quantifiers may give spu-
rious results. They may indicate the presence of
chaos in systems that are not chaotic.

Standing posture is still poorly understood and
weakness of postural control mechanism certainly

plays a role in balance control during quiet stand-
ing. Characterization of postural oscillations and its
underlying control system may improve our under-
standing about interactions between components
to achieve postural balance. In this study, first we
examined sway dynamics of healthy and deterio-
rated quiet standing postural control mechanisms
using principles of chaos theory to investigate the
existence of low dimensional chaos in normal and
abnormal standing posture and changes that are
associated with deterioration of postural control
mechanism. Next, the possibility of using chaotic
quantifiers as the pathologic measures to evalu-
ate balance impairments and distinguish healthy
from deteriorated neuromuscular control systems is
investigated.

2. Methods

2.1. Participants and procedures

In this study, with the aim of investigation of sway
dynamics of normal and deteriorated postural con-
trol systems, two distinctly different groups are con-
sidered. One implies normal dynamics of postural
control system and the other indicates abnormal
or changed postural control dynamics. Postural
control system of healthy young adults is con-
sidered as the system with normal dynamics and
of elderly stroke patients with severe balance dis-
orders is considered as the abnormal dynamical
system. Thirty two stroke patients (17 male and
15 female) with a first hemispheric intracerebral
infarction or hematoma with less than one year
(6.9± 4.2 months) post stroke time with the age of
60.59 ± 8.64 years old and body mass index (BMI)
index of 25.01 ± 4.51 and 29 healthy young adults
(16 male and 13 female) with the age of 25.90 ±
3.32 years old and 23.54± 2.88 BMI index, without
known motor impairments or movement-related dis-
orders, participated in the experiment. There was
no significant difference between BMI indexes of
two groups.

Postural fluctuations were evaluated using a
dynamic dual force platform (SOT#1, EquiTest
testing system, NeuroCom International Inc.,
Clackamas, OR). The system was equipped with a
movable visual surround and support surface that
could rotate in the AP plane. Two 22.9 × 45.7 cm
force plates connected by a pin joint were used to
collect COP coordinates at 100 Hz.

Participants were instructed to stand in an
upright posture in a standardized foot placement
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on the platform based on each subject’s height
according to the manufacturer’s protocol [Equi-
Test System Version 8.0, Operator’s Manual, 2001].
Participants stood barefoot with their arms relaxed
at their sides, their eyes open and look straight
ahead fixed on a point in front of them. They were
instructed to concentrate on their stability, stand
freely, and have no other mental tasks. Each par-
ticipant performed a set of three trials each lasting
20 sec.

2.2. Data analysis

Prior to all analyses, mean and linear trends of the
signals were removed. The signals are denoted as
x(t) and y(t) where x and y respectively correspond
to mediolateral and anterioposterior components
of COP displacements. Since filtering is poten-
tially dangerous activity that can affect dimen-
sion estimates and other calculations [Stergiou,
2004], filtering was avoided in this study. Corre-
lation dimensions (DC) of COP components’ time
series were calculated to investigate the existence
of low dimensional attractors within sway dynam-
ics of healthy and deteriorated standing still pos-
tural control mechanisms and standard deviations
(σ) were calculated to evaluate postural variability
during quiet standing.

2.3. Correlation dimension

Correlation dimension is the attractor dimension
and may provide an estimate of the number of active
dynamical degrees of freedom involved in postural
control system. Chaotic systems are generally char-
acterized by finite, noninteger (fractal) values for
correlation dimension.

Numerical algorithms have been proposed to
quantify this property and detect the presence of
chaos in experimental time series [Grassberger &
Procaccia, 1983; Hilborn, 2000; Sprott, 2003;
Kantz & Schreiber, 2004]. In this study to calculate
correlation dimension of the time series we used
Chaos Data Analyzer (CDA) software package
(Physics Academic Software, by J. C. Sprott and
G. Rowlands). This software follows the Grass-
berger and Procaccia algorithm for calculating cor-
relation dimension [Sprott & Rowlands, 2003]. For
scalar time series, these algorithms require recon-
struction of system’s attractor by embedding the
time series in m-dimensional phase space by delayed
vectors as x(ti), x(ti + τ), x(ti + 2τ), . . . . In order
to reconstruct the attractor of a dynamical system,

two problems will need to be solved. The first con-
cerns how to select the time delay (τ), for recon-
structing the trajectory in phase space. With very
small delays, the resulting delayed vectors will be
nearly the same, and so the trajectories in the
embedding space will all be compressed into a long
thin volume equivalent to a diagonal line in the state
space. On the other hand, a large delay may pro-
duce coordinates which are essentially unrelated.
For nonlinear systems one of the favored approaches
is choosing the delay coincides with the first local
minimum of auto mutual information function that
maximizes independence between state vectors.
This value was not repeatable in COP time series
of neither healthy subjects nor stroke patients but
it can be characterized by a mean value ± stan-
dard deviation in each group of COP time series. So,
the average of first local minimums of auto mutual
information function of each group of COP time
series is considered as the proper time delay.

The second problem concerns how to determine
the embedding dimension (d) of the system. Our
approach to this problem was to use an analytic
method known as False Nearest Neighbors. Embed-
ding dimension is chosen when the percentage of
false nearest neighbors as a function of the embed-
ding dimension drops or closest to zero (Fig. 3).
Correlation dimensions of COP time series were
calculated according to abovementioned method.

2.4. The method of surrogate data
(nonlinearity hypothesis
testing)

Surrogation is a technique used to determine
whether a deterministic source exists for a given
time series. The idea is to compare the original
data set to artificially randomly generated data sets
which mimic certain prescribed features of the orig-
inal data set and are consistent with null hypothe-
ses of random processes [Theiler et al., 1992]. The
discriminating statistic (correlation dimension) is
computed for the original and each respective sur-
rogate data sets. If the results of the surrogates
and the original time series are statistically signifi-
cantly different, then the null hypothesis is rejected.
In this study phase, randomization surrogate data
generation algorithm is used to identify nonlinear-
ity in COP time series. Thirty surrogate time series
are generated for each original COP time series by
Chaos Data Analyzer software package. These sur-
rogate data sets have the same power spectra as the
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original data, but all other information encoded in
the phases is lost.

The most important point is that the surrogate
technique does not tell us the original data set is
chaotic; it only rejects the null hypotheses of being
noise and detects nonlinearity in time series.

2.5. Statistical analyses

All statistical analyses were performed using SPSS
software package version 11.5 (SPSS Inc., Chicago,
IL, USA). Normality of standard deviations and
calculated correlation dimensions were checked,
independent samples T tests with 95% level of con-
fidence were used for the effect of subject group
on estimations of the variables σ and DC, and
paired samples T tests with 95% level of confidence
were used to evaluate statistical differences between
AP and mediolateral (ML) variables in each group.
To evaluate the effects of deterioration of postu-
ral control mechanism on the amount of changes
of the variables in each direction Cohen’s d statis-
tic was used. Cohen’s d is appropriate for com-
parison between two means and is defined as the
difference between two means divided by pooled
standard deviation.

Intra class correlation coefficients (ICC) were
calculated to document the intra session reliabil-
ity of σ and DC within two groups. The ICC values
were categorized as follows: excellent (0.75–1), mod-
erate (0.4–0.74), and poor (0–0.39) [Fleiss, 1986].

To evaluate statistical differences between cal-
culated correlation dimensions of each original data
set and its 30 surrogate counterparts one sample
T test was used and to evaluate statistical group
differences between calculated correlation dimen-
sions of original time series and surrogate time series
independent samples T tests were implemented.

3. Results

The results of calculating embedding parameters
are listed in Table 1. Median of first local minimums
of auto mutual information functions of each group
of COP time series was considered as the proper
time delay and false nearest neighbors algorithm
was used to determine embedding dimension of each
COP time series (Fig. 3).

Correlation dimensions and standard devia-
tions of COP time series were calculated and the
results are shown in Fig. 4. Marked differences
are found between linear and nonlinear sway char-
acteristics of elderly stroke patients and young

Table 1. Descriptive statistics of first local minimums of
auto mutual information functions and embedding dimen-
sions in both healthy and patient groups.

Group

Healthy Median (IQRa) Patient Median (IQR)

Index AP ML AP ML

τ 8 9 10 9
(2) (2) (4) (3)

d 4 6 4 5
(1) (1) (0) (1)

aInterquartile range.

healthy subjects and also between sway character-
istics along AP and ML directions in each group.

The results indicate that due to degradation
of postural control system, postural variability
increased, whereas calculated correlation dimension
of COP time series were decreased. In both groups,
postural variability was higher along AP direction,
but calculated correlation dimensions of AP COP
time series were lower than ML ones.

The results of calculating Cohen’s d indicate
that postural variability along AP direction and cal-
culated correlation dimensions along ML direction
are more affected by deterioration of postural con-
trol mechanism (Table 2).

Fig. 3. FNN versus Embedding dimension plot for a sample
ML COP displacements of a stroke patient (for this time
series a four-dimensional embedding space is estimated using
FNN algorithm).
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Fig. 4. The effects of health status on variability measures
(top panel) and calculated correlation dimensions (bottom
panel). †: Patients are significantly different from healthy sub-
jects along both directions (p = 0.000). ∗: AP is significantly
different from ML in each group (p = 0.000).

The ICC values of standard deviations and cal-
culated correlation dimensions are listed in Table 3.
Sway characteristics demonstrated excellent intra
session reliability for stroke patients (average =
0.8211) and moderate level for healthy subjects
(average = 0.6591).

Table 2. The results of calculating Cohen’s d to evaluate the
effects of health status on the amount of changes of AP and
ML COP variability and calculated correlation dimensions.

Index Direction Cohen’s d

σ AP 1.50
ML 1.23

DC AP 1.48
ML 1.63

Table 3. ICC values of standard deviations and calculated
correlation dimensions.

Group

Index Healthy Patient

σ AP 0.6851 0.7467
ML 0.6794 0.8432

DC AP 0.6620 0.8883
ML 0.6098 0.8062

Fig. 5. Randomization effects on calculated correlation
dimensions. †: Original time series and phase randomized sur-
rogates all differed significantly from each other (p = 0.000).

One sample T tests demonstrated significant
differences between calculated correlation dimen-
sions of each original COP time series and surrogate
counterparts. Independent samples T test results of
calculated correlation dimensions of each group of
original COP time series and their surrogate data
sets are shown in Fig. 5. The results indicate sig-
nificant differences between calculated correlation
dimensions of COP time series and their surrogate
data sets.

4. Discussion

4.1. Groups

In this study, the authors did not intend to compare
stroke patients with age matched controls and inves-
tigate changes which are caused by stroke. Here,
we examined the assumption of existence of low
dimensional chaos in sway dynamics of both healthy
and deteriorated quiet standing postural control
mechanisms. Due to this reason, two distinctly dif-
ferent groups were considered to better indicate dif-
ferences between normal and abnormal patterns of
balance control during quiet standing.
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4.2. Linear variability measure

Our results indicate that postural variability is
increased due to deterioration of postural control
mechanism. Increasing of postural variability may
be interpreted as the higher postural instability and
more variable postural control system. But bear in
mind that linear variability measures only quantify
the magnitude of sway and not temporally evolv-
ing dynamics of postural control system [Stergiou,
2004; Harbourne & Stergiou, 2009]. Postural insta-
bility defined by linear variability measures should
not be viewed from dynamical systems theory and
higher postural instability in deteriorated postu-
ral control system does not imply higher order
dynamics.

Although linear variability measures well dis-
criminate normal and abnormal postural control
systems during quiet standing, they did not give
useful information about underlying control system
and its hidden dynamics. These measures ignore
temporal characteristics of time series, so dynam-
ical system approaches seem to be useful in this
regard and may provide new openings to underly-
ing control structure.

4.3. Nonlinear dynamical system
quantifiers

Our findings indicate that calculated correlation
dimensions well discriminate two groups. Both of
them have noninteger calculated correlation dimen-
sions and healthy subjects have higher calculated
correlation dimensions than the patients. However
finding fractal dimensions for COP trajectories does
not prove that there is a low dimensional chaotic
nature behind the postural control mechanism. In
this study, we have examined this assumption care-
fully using principles of chaos theory. Finding a
plateau in the plot of calculated correlation dimen-
sions versus embedding dimensions is not sufficient
for concluding that the correlation dimension is
saturated at a specific embedding dimension and
thus is independent of next embedding dimensions
(Fig. 6), it should be examined with equivalent
figures.

Although at each embedding dimension a linear
scaling region whose slope is correlation dimension
can be approximated in logarithmic plot of correla-
tion sum versus distance r (Fig. 7), but this linear
scaling region does not have significant length at
least for two decades of distance r at each embed-
ding dimension (Fig. 8).

Fig. 6. Plot of calculated correlation dimensions versus
embedding dimensions of a sample ML COP displacement
of a stroke patient. Saturation of correlation dimension can
be seen in the five-dimensional embedding space (as shown in
Fig. 3, FNN algorithm suggests four-dimensional embedding
space for this time series).

These findings do not provide convincing evi-
dence for existence of low dimensional chaotic
attractors for standing still postural fluctuations.
Even if there is a chaotic regime within sway
dynamics of quiet standing postural control, it could
be of a dimension too high to detect or it could be

Fig. 7. Logarithmic plot of C(r) versus r at different embed-
ding dimensions for the same sample time series as in Fig. 6.



May 10, 2010 20:34 WSPC/S0218-1274 02647

1276 H. Ghomashchi et al.

Fig. 8. Slope of correlation sum (correlation dimension) ver-
sus r at different embedding dimensions for the same sample
time series as in Figs. 6 and 7.

buried in the noise. Since no low dimensional attrac-
tors are found, calculating Lyapunov exponents is
meaningless and may give spurious results.

Any claim about the presence of low dimen-
sional deterministic chaos based on noninteger val-
ues obtained from dimensionality analyses of finite
time series should be done with great caution.
However, dimensionality analysis with the aim
of finding a discriminating criterion or screen-
ing method for evaluating postural control system
seems to be useful, but the results should be checked
against surrogate data test.

4.4. Randomization

In order to guarantee validity of dimensionality
analysis applied here, we used phase randomized
surrogate data generation algorithm. We compared
calculated correlation dimensions of COP time
series with those obtained from surrogate data
(Fig. 5). The results show that the null hypothesis
of linearly correlated noise is rejected. Rejection
of null hypothesis does not demonstrate that a
chaotic nature exists for postural fluctuations; it
only detects a source of nonlinearity in COP trajec-
tories and indicates that its structure is significantly
different from random noise.

4.5. Filtering effects

Yamada [1995] found correlation dimensions
between 2.1–2.5, Newell et al. [1993], Donker et al.

[2007], and Roerdink et al. [2006] found similar
values of 2.30 ± 0.52, 2.23 and about 2.5, respec-
tively for normal subjects. All the above men-
tioned studies have filtered the COP time series
using low pass filters. Yamada [1995] used a low
pass filter with 5 Hz cutoff frequency, Newell et al.
[1993] and Donker et al. [2007] used 10.5 Hz and
12.5 Hz cutoff frequencies, and Roerdink et al.
[2006] used the COP time series of Dehaart’s study
[2004] in which the COP signals were filtered with
6Hz cutoff frequency. With regards to sensitiv-
ity of nonlinear quantifiers to filtering and noise
reduction of the signals and its effect on dimen-
sion estimates and other calculations, the COP
signals have not been low pass filtered in this
study and that is the reason we obtained higher
correlation dimensions in comparison with related
literatures.

4.6. Variability: Correlation
dimension versus standard
deviation

There are different methods to evaluate variability.
The amount of variability is measured by linear
measures such as rang, interquartile range, stan-
dard deviation, etc., and the structure of variability
is measured by complexity quantifiers like entropy
[Stergiou, 2004]. Complexity is something that is
hidden within the time series and captures variation
in the system’s behavior across time. Amount and
structure of variability are often inversely related
and change in opposite directions [Harbourne &
Stergiou, 2009]. In this study, we found the same
results if calculated correlation dimension is consid-
ered as a complexity measure which quantifies state
space behavior (spatio-temporal variability) of COP
time series. The results in Fig. 4 indicate that the
amount of variability is increased in deteriorated
postural control system whereas the complexity is
decreased. This makes sense, in deteriorated pos-
tural control system less complex programs which
alter the structure of postural fluctuations are uti-
lized to maintain balance during quiet standing. It
supports the notion that complexity would arise
from fine tuned adjustments with selected, adap-
tive and flexible programs for maintaining balance
during quiet standing [Harbourne & Stergiou, 2009]
like which are used in healthy postural control
system. These results are well consistent with the
results of many other literatures which indicate
loss of complexity in elderlies, and in neurological
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and physiological diseases [Kaplan et al., 1991; Lip-
sitz & Goldberger, 1992; Pincus & Goldberger,
1994; Lipsitz, 2004; Kunhimangalam et al., 2007].

Analyzing both components of COP time series
reveals that in both groups AP postural fluctua-
tions are more variable yet more structured than
ML. Although the two components of the COP
trajectories are often analyzed separately, they rep-
resent the output of an integrated control sys-
tem and in case of postural control impairments,
both of them are changed in a same manner. This
may be the reason that many researchers concen-
trated only on a component of COP trajectories
(especially AP) to study postural control behavior
during quiet standing [Nichols et al., 1995; Ladis-
lao & Fioretti, 2007; Esteki et al., 2009]. In this
study we found the same results, both AP and
ML postural variability as well as their complexity
are changed due to deterioration of postural con-
trol mechanism but the Cohen’s d statistics show
that rigidity of balance program is more increased
along ML direction. These may interpreted as the
reduced ability of symmetrical weight distribution
between load bearing limbs, lower ability of load-
ing the paretic side and/or load shifting from non-
paretic to paretic side and vice versa. The results
of frequency analysis of these two groups show that
mean frequency of ML COP time series is decreased
due to deterioration of postural control system
whereas the mean frequency of AP COP time series
did not significantly change [Rajabali, 2009]. It
implies that due to neurological impairments, it
takes longer to have side-to-side load shifting which
causes greater sideway sway range, variability, and
more repeatable sway patterns comparing to that
of healthy subjects which leads to more struc-
tured (less complex) movement patterns. It may
be the reason that complexity is more decreased
along ML direction in impaired postural control
system.

4.7. Reliability analysis

Since ICC values of linear and nonlinear postural
sway quantifiers demonstrate excellent intra ses-
sion reliability for the patients and moderate reli-
ability for the normal subjects, we cannot define
which one better describes postural fluctuations.
But it should be noted that amount and structure
of variability are complementary and do not negate
each other, but their interpretations are different.
However, from the ICC results, it is concluded that

deterioration of postural control mechanism causes
greater reliability. Higher ICC values of patients’
sway characteristics indicates decrease of within
subject variation in patient group which may be
interpreted as more stationarity in sway dynamics
of stroke patients.

5. Conclusion

In this study, we investigated sway dynamics of
normal and abnormal postural control mechanisms
using a linear statistical measure and a nonlinear
dynamics quantifier correlation dimension. In spite
of the fact that linear variability measures ignore
the temporal structure of time series, they can be
used as the pathological discriminating criteria for
balance disorders.

We have examined the assumption of chaotic
behavior of standing still postural control mech-
anism by means of principles of chaos theory.
Notwithstanding that fractal dimensions were cal-
culated for postural fluctuations time series, but we
could not find any evidence to document existence
of low dimensional attractors in COP dynamics
of neither healthy nor deteriorated postural con-
trol mechanism. Thus, it is not practical to calcu-
late Lyapunov exponents. We never disprove the
existence of chaos within sway dynamics of nor-
mal and abnormal quiet standing postural control
systems but none of them may be modeled as a
low dimensional chaotic process and if there is any
chaos within dynamics of quiet standing postural
fluctuations it might be of a dimension too high
to detect.

Although using randomization technique non-
linearity was detected within the COP time series,
this nonlinearity necessarily may not have a deter-
ministic chaotic origin. It is important to recognize
that there are orderly patterns within these out-
wardly unorganized and noisy looking fluctuations
which are the outcomes of distinguishable different
postural control programs. Calculated correlation
dimension as well as many other complexity
measures may provide new insights to underly-
ing structure of postural control mechanism. The
results justify the inclusion of nonlinear quanti-
fier correlation dimension in the clinical assessment
of postural fluctuations but specifying low dimen-
sional chaotic nature or finite number of active
dynamical degrees of freedom for quiet standing
postural control based on short noisy data sets
should be done with great caution.
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