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Abstract: In this paper we show the homoclinic bifurcations which are involved in some contact bifurcations
of basins of attraction in noninvertible two-dimensional map. That is, we are interested in the link between
contact bifurcations of a chaotic area and homoclinic bifurcations of a saddle point or of an expanding fixed
point located on the boundary of the basin of attraction of the chaotic area. We shall analyze the particular
case of a map having up to three distinct preimages, and the basins’s bifurcations are investigated by use of
the technique of critical curves.
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1 Introduction

Since the celebrated works by Smale [28],[29] it is well known that the existence of homoclinic orbits of a saddle fixed
point or cycle is related with the existence of complex dynamics of a system (see also the book by Devaney [5], or [13]
or any other text on Dynamical Systems). Really this complex dynamic behavior had been already understood several
years before by Poincaré, and the first rigorous proofs are already given by Birkhoff in [3]. The existence of an infinity of
periodic points in any neighborhood of an homoclinic orbit was proved by [3] and [27], and supplementary properties of
invariant chaotic sets may be found in [24]. Thus we recall that in any neighborhood of a transverse homoclinic orbit of a
saddle fixed point of a diffeomorphism 7" (as for a k—cycle we refer to the fixed points of the k — th iterate of the map
T) there exists an invariant Cantor set A on which the map, or a suitable iterated 7", is topologically conjugated to the
shift map o on the set 2o of the one-sided infinite sequences on two symbols (3o = {a ={.a; ;;Ofoo; a; =0 or 1} and
o(.aparas...) = (.ajaz...)).

In the case of two-dimensional endomorphisms, that is the object of this work, the existence of homoclinic orbit also
plays a fundamental role in the complex dynamic behavior. A first remark is that homoclinic orbits may be associated not
only to saddle fixed points or cycles, but also to expanding fixed points (as unstable nodes or foci). This was proved for
the first time in

Marotto [18], where it was shown that chaotic dynamics in the sense of Li & Yorke [16] occur in any neighborhood
of an expanding fixed point having an homoclinic orbit (a so called snap-back repellor). This results was extended in
Gardini [10], where it was shown that the first bifurcation value leading an expanding fixed point to become a snap-back
repellor is associated with the critical curves of the endomorphism. The results have been also reconsidered by the same
authors (see [19], [26], [12]).

In the case of transverse homoclinic orbits a saddle fixed point in noninvertible maps, [15] proved that results of Smale
recalled above, are valid also for an endomorphism defined by continuously differentiable functions. And the existence of
Cantor sets and complex dynamics associated with saddle cycles having transverse homoclinic orbits has been shown to
exist also in piecewise smooth systems in examples considered in [11] and [17].

In this work we shall consider another example, showing how relevant is the connection between the contact bifur-
cations involving the basins of attraction and the invariant attracting chaotic sets. We shall consider in particular the
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homoclinic bifurcation of a saddle cycle belonging to the boundary of the basin of attraction of a chaotic area in a two-
dimensional endomorphisms of so-called type Z; — Z3 — Z; (i.e. whose points have either one or three different rank-1
preimages, depending on some regions of the phase space). We will show, via a numerical study, that at bifurcation
value the points of contact between the boundaries of the attractor and its basin converge toward the saddle point. These
points of contact are also intersection points between the stable and unstable manifolds of the saddle point, and after the
bifurcation value the stable and unstable sets of the saddle have transverse homoclinic points.

Another important mathematical tool used to study the bifurcations which take place in invariant areas of two-
dimensional endomorphisms, either for invariant absorbing areas or chaotic areas, is the notion of critical curves, first
introduced by Mira in 1964, see [14] and references therein. This tool provides an excellent instrument for the compre-
hension of many bifurcations occurring in noninvertible maps. This notion is the natural generalization to R? (and more
generally to R™ for n > 2) of the notion of critical points of one-dimensional endomorphisms. Following GM 80 we
define the critical curve LC of an endomorphism 7T in the plane R? as the geometrical locus of points z having at least
two coincident rank-1 preimages in a set of points denoted as LC'_; (so that T(LC_1) = LC"). When T is differentiable,
the locus LC'_; is also associated with the Jacobian of T as it belongs to the set of points in which the Jacobian of T’
vanishes: let J = det(DT'(z,y)) = 0 then LC_; C J. A critical curve LC may be constituted of one or several branches,
which separate the plane in open regions Z;. All the points of a region Z; have the same number ¢ of distinct rank-1
preimages (see also [21], [23]).

Since the pioneering works by Gumowsky and Mira [14], several papers have shown the importance of the critical
curves in the bifurcations associated with invariant chaotic areas in noninvertible maps. In [2], [1], [9], [22], [7], it is
shown that such contact bifurcations lead either to the chaotic area destruction, or to a sudden modification of the area.
Moreover, the critical curves are involved in the bifurcations of the structure of the basins of attraction (of attracting sets
of any type), we refer to the classification performed in [21] (see also [23]), and examples will be also shown also in the
map considered in this work.

The content of the paper, besides this introduction, consists in a survey of some definitions and properties performed
in Section 2, then in Section 3 we introduce the map which will be used to illustrate several kind of bifurcations. In
particular, we put in evidence the transition of the basin from a smooth boundary to a fractal boundary with a repelling
node on the frontier, or the transition from a smooth boundary to a fractal boundary with a repelling focus on the frontier
of the basin, and the last situation will show the transition from a chaotic attractor to a chaotic repellor, via a homoclinic
bifurcation of a saddle fixed point on the frontier of the basin.

2 Definitions and properties

In this section, we recall the main definitions and properties associated with some technical tools as absorbing area, chaotic
area, as well as contact and homoclinic bifurcations. We consider an endomorphism 7" which defines a discrete dynamical
system in R? :

(xn+1; Z/n+1) = T(xmyn) = (f(xnayn; A)ag(l‘na Yn; A))

where f(x,y,\) et g(z,y,\) are continuous and differentiable functions with respect to the real variables x, y and
continuous with respect to the real parameter \.
Let J(z,y) = det(DT'(z,y)) and let us consider the set J(x, y) = 0, then the critical set LC'is the geometrical locus of
points x having at least two coincident rank-1 preimages in points of LC_; C J (T'(LC_1) = LC).
Definition 2.1: An absorbing area F is a closed and bounded set of the phase space such that:

() T(E) C E;

(ii) its frontier, O F is made up of a finite number of critical arcs of LC, LC, LCs,...., LCy, such that LC' = T(LC_1),
LC; = TY(LC) fori > 1;

(iii) A neighborhood U (E)) exists whose points have an images of finite rank in the interior of E (i.e. all the points of
U are mapped into E after a finite number of iterations and cannot escape).
Notice that in the definition given above the number of critical arcs on the boundary of E is assumed finite in number
because the case in which the number of arcs becomes infinite the map is at a bifurcation value (an example will be given
also in the next section), and at the bifurcation value in the neighborhood U(E) there exist also points which are not
mapped in the interior of F, while they are convergent to the frontier of E.
Remark 1. An absorbing area may contain one or several attracting sets.

An absorbing area F is called invariant iff T(E) = E. When an absorbing area F is not invariant (but T'(E) C E)
then the intersection N,,~o7™ (E) (n finite or infinite) is an invariant absorbing area. When an absorbing area E is invariant
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(T'(F) = E) then the frontier OF of E is detected by a finite number of critical arcs which are all belonging to the images
of a particular segment of critical curve belonging to E (see [23]). That is, let v+ = E N LC_q, then there exists a finite
integer m such that:

OE C UL, T*()

When a finite number m such that the boundary OF of E is included in U, 7 (7y) does not exist then the invariant
absorbing area F is at a bifurcation.

Only invariant absorbing areas are useful considering contact bifurcations between the absorbing area boundaries and
the boundaries of their attraction basins (as non invariant absorbing areas do not undergo bifurcations when involved in
some contact, and are of no consequence for the invariant attracting set which they include).

Definition 2.2: A chaotic area A is an invariant absorbing area (T'(A) = A)), the points of which give rise to iterated
sequences having the property of sensitivity to initial conditions.

About chaotic areas, it is important to emphasize that the study of such area may be related with the transition to
fractal basin boundaries.

Remark 2. In [23] it is also introduced the notions of mixed absorbing areas and mixed chaotic areas. The difference
between these last notions and the one given above is that in the boundaries of a mixed absorbing area there exist also
segments of the unstable set of some saddle cycles (for more details see also [25]). However, the contact bifurcations
which are of interest in this work are related with absorbing areas of not mixed type.

Definition 2.3: We say that at A = \* a contact bifurcation of E occurs if there is a contact between the boundary of £
and its basin.

Proposition 2.1: When a contact bifurcation of a chaotic area A occurs at A\ = \*, then crossing this value leads either
to the destruction of A, or to a qualitative modification of properties of A (i.e. a sudden modification of the size of such
an area).

The destruction of A, after the crossing of a contact bifurcation value has been shown by [14], and these bifurcations
have been considered later in 96. The disappearance of a chaotic area leads to the existence of a strange repellor constituted
of an infinity of unstable cycles, their stable sets and the arborescent sequences of their images: all invariant sets which,
before the bifurcation, were included in the area A. The existence of such an invariant set, chaotic repellor, gives rise
to chaotic transient in the trajectories of initial conditions belonging to the old invariant area, which are then converging
towards some different attractor, at finite or infinite distance.

Among the qualitative change of properties of a chaotic area A after the crossing of a value of contact bifurcation we
also mention the transformation of an annular chaotic area A (connected area with a hole), either in a simply connected
area or in a non connected cyclic area of period &, which occurs when the value A\* corresponds to a contact between the
boundary of A and an isolated unstable focus belonging to the boundary of its basin of attraction, as described in [2], [10],
[23].

Now let us turn to the homoclinic orbits, both of saddle cycles and of expanding cycles. For the shake of simplicity
we shall consider only a fixed point of 7" (as for a k—cycle we refer to the fixed points of the map T%).

Definition 2.4: Let S be a saddle fixed point of T, W#(.S) and W*(.S) denoting its stable and unstable sets. A point g
is called homoclinic to S if ¢ € W*(S) N W*(S) and ¢ # S. ¢ is a transversal homoclinic point if W*(.S) intersects
transversely W*(S).

An homoclinic orbit O,(q) is the set of points given by the forward images of the point ¢ (belonging to W#(.S)) and the
sequence of its preimages which belong to W*(S) (which necessarily exist): O,(q) = {....q—2,4-1,4,T"(q);n > 0} =
{""a q—ns-4-2,4-1,49,41,42, ---; dn, } ) where qn = Tn(Q) - S’ and q—n € Tﬁn(q) — 5.

It is worth noticing that when the map is noninvertible, the stable set of the saddle fixed point is not necessarily a
connected set. In fact, when the fixed point has a rank-1 preimage different from itself, it may occur that the stable set of
a saddle is a disconnected set.

When a map is invertible, a fixed point of type repelling node or focus cannot have homoclinic points, while this is not
the case when the map is noninvertible, due to the possible existence of a stable set different from the point itself. When
such an expanding fixed point has homoclinic points it is called a snap-back repellor by Marotto [18]. A repelling node or
focus P is such that a neighborhood U (P) of P exists in which the Jacobian matrix has both the eigenvalues higher than
1 in absolute value, and we say that T’ is expanding in U, and we denote by Tfl the local inverse map of 7" in U (P), such
that 7, '(P) = P.

Definition 2.5: A repelling node or focus P is called snap-back repellor if a point ¢ exists in a neighborhood U (P) in
which T is expanding such that 7™ (q) = P.

As clearly also a sequence of preimages of ¢ exists which is convergent to P, we have realized an homoclinic or-

bit. That is: an homoclinic orbit O,(q) associated with an homoclinic point ¢ of an expanding fixed point P is the set
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constituted of successive iterates of ¢, and an infinite sequence of preimages obtained by application of the local in-
verse map 7, 'of T'in U(P): O,(q) = {T,7™(a),q,T™(q);in >0} = {..eg—n» s =2, =1, 4, 41, 25 -, G --- }» Where
qn = Tn(Q) — S, and q—n = CTl_n<(]) — 5.

Similarly we can define heteroclinic orbits connecting unstable fixed points or cycles of T', which are points whose
images are convergent to one cycle, say (), and a sequence of preimages exists converging to another cycle, say P. Without
loss of generality we can consider a point of this heteroclinic trajectory belonging to a neighborhood U (P) and we denote
by 7, the local inverse map of T"in U (P) (satisfying 7, ' (P) = P). Then
Definition 2.6: An heteroclinic orbit O.(q) connecting a cycle P to a cycle () associated with ¢ is the set of points
given by ¢ together with its images (finite or infinite in number) convergent to () and its infinite sequence of preim-
ages obtained by application of the local inverse map 7} 'of 7' in U(P). Oc(q) = {T,™(q),q,T"(q);n >0} =
{@ons o q-2,4-1,4, 41,925 -+, Gn, .-} Where g, = T"(q) — Q, and g, = T; "(q) — P.

Definition 2.7: Let T be an endomorphism of R? depending on a parameter A and let .S (resp. P) be a saddle (resp.
expanding) fixed point of 7". We say that a homoclinic bifurcation occurs at \* if crossing A = \* there is the appear-
ance/disappearance of an infinitely many homoclinic orbits.

As already remarked, the relevance of the notions given above is that whenever an homoclinic orbits exists, it can
be proved the existence of invariant sets with chaotic dynamics. For expanding cycles this was proved for the first time
by Marotto. In [18] it is proved that if ¢ is a non degenerate homoclinic point of an unstable node or focus P then in
any neighborhood of the homoclinic orbit of P there is chaos in the sense of Li and Yorke (which include an infinity of
unstable cycles of T').

This role is also associated with heteroclinic orbits when they are in pair, that is, when an heteroclinic orbit O, (q)
exists connecting a cycle P to a cycle () and another heteroclinic orbit O, (r) exists connecting the cycle @) to the cycle
R. Thus the intersections of stable and unstable manifolds of cycles are the simplest tool to detect homoclinic orbits and
thus chaotic behavior.

When a fixed point or cycle of 1" is homoclinic then there exist infinitely many homoclinic orbits associated to it.
When dealing with homoclinic and heteroclinic orbits in noninvertible maps their existence is associated with points
belonging to both sides of the set LC'_;. A homoclinic or heteroclinic orbit is called degenerate, or critical, if it contains
one point of LC'_; and nondegenerate otherwise. The first homoclinic bifurcation is the one leading a fixed point from
non homoclinic to homoclinic (and vice versa). In general, after the first homoclinic bifurcation, several other homoclinic
bifurcations (or explosions) may occur, leading to more and more homoclinic trajectories. The result of Marotto has been
extended by Gardini [10] showing that at the first homoclinic bifurcation of an expanding fixed point all the homoclinic
orbits are critical. Moreover, any homoclinic bifurcation is associated with critical homoclinic orbits, which are followed
by an explosion of new noncritical homoclinic orbits after the bifurcation. This is because critical points in the priemages
of a fixed point are those related with news branches in the sequences of preimages, and thus we can say that a homoclinic
bifurcation represents an explosion of the global stable set W ¢(.S). An explosion of homoclinic orbits of a cycle is always
associated with an explosion of unstable cycles in the chaotic sets, and these infinity of cycles must have been created via
sequences of flip and fold bifurcations. Thus these homoclinic bifurcation values, are probably also accumulation points
of simple (fold and flip) bifurcation values.

A relevant homoclinic bifurcation of an expanding fixed point is that associated with annular chaotic areas, as shown in
[10]. In the case of a saddle fixed point S on the boundary of a basin of attraction D of chaotic area d, a contact bifurcation
such that 7" (hg) — S, when hg € ddNAD(d) at the bifurcation value, can correspond to the birth of homoclinic orbits
of S. It is a conjecture, that has been verified in [9], for dynamical systems defined by piecewise linear maps, and also in
[17]. Other examples of the appearance of saddle homoclinic orbits which occurs due to contact bifurcations of chaotic
areas are given in [7]. Before the contact bifurcation we are sure that homoclinic orbits of a saddle fixed point .S belonging
to the boundary of the basin of a chaotic area do not exist, at least inside the basin (while outside can exist). Indeed, this
occurs whenever the branch of the unstable set of S* which enters the basin is converging to the chaotic area, so that
before the bifurcation the invariant chaotic area has no intersection with the boundary of the basin, which means that such
a branch of the unstable set /() has no intersection with the stable set W *(S) (belonging to the basin’s boundary).
While a contact of the invariant chaotic area with the basin’s boundary in the stable set of the saddle leads to a contact
between W*(S) and W#(.S), and thus to homoclinic points.

2.1 Properties of W*(5) and W*(S)

In the case of an invertible map, the stable invariant manifold W*(S) of a saddle point S is always connected. This is
not necessarily true for a noninvertible map. For a saddle cycle .S belonging to the boundary of some basin of attraction
of some attractor A, its stable set W*(S) belongs entirely to the frontier of the basin. When W*#(S) has a contact with
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the critical line LC, W*#(.S) becomes non connected and its connected components may be finite in number or infinitely
many. These contact bifurcations are those associated with the changes in the structure of the basins of attraction, for
example changing a connected basin into a multi connected one or into a disconnected one, as shown in [21] and [23].

When an unstable invariant manifold W*(.S) has a contact with the critical curve LC, a bifurcation leading to the
appearance of self-intersections of this manifold may occur. For example, These self-intersections are responsible of the
transformation of a closed invariant curve I into a chaotic attractor, as shown in [20] and [23]. Indeed, if an arc is mapped
into an arc with a point of self-intersection, this point is a point of non differentiability, it is a point having at least two
distinct rank-one preimages, and thus it must belong to the critical set. By successive iterations of 7" the invariant set must
include an infinity of points of self-intersections, and thus of points of non differentiability, which means that I" becomes
a fractal set.

3 Example of a cubic recurrence having chaotic attractors and fractal basin

In this paper we consider a dynamical system generated by a family of two-dimensional continuous noninvertible maps 7'
defined by
{ Tpi1 =23 +az, +b+yn
Yn+1 = CTy + dyn
where a, b, ¢, d are real parameters. The critical curves are here obtained as locus J(z,y) = det(DT(x,y)) = 0 and are
two straight lines in the phase space, LC'_; and LC” ;, given by:

c a+1 c a+1
LC_,: z= ———— LC 2= —/—= —
(Cl T e 3d 3 )

and their images LC' and LC" are also straight lines given by:

LC: y=dx—dazf— (ad+d— c)xg —db her: _Je _atl
LC - y =dx + dzd + (ad +d — ¢)zg — db e o= 3d 3

this endomorphism is of type Z; — Z3 — Z; as the critical curves LC and LC’ separate the phase plane in three regions
whose points have 1-3-1 different rank-1 preimages. Depending on the values of the parameters, it is possible to ob-
serve several kinds of routes to complex dynamics (via sequences of local bifurcations and global bifurcations, typically
homoclinic bifurcations). Here we are interested in showing some dynamic behaviors which cannot be studied by local
methods (based on linear approximations around the attractors) but only through a global study of the map, often requiring
an interplay among analytical, geometric and numerical methods.

Our map is not invertible and we shall see that the use of the method of critical curves LC; in order to explain the
contact bifurcations which cause the formation of non simply connected basins, and the homoclinic bifurcations leading
to fractal boundaries. For maps of dimension higher than one, the methods followed in the determination of the contact
bifurcations are based on a systematic computer assisted study, carried out through a continuous dialog between analytic,
geometric, and numerical methods, which often require a careful use of computer graphics. Clearly, the detection of
contacts among these objects (critical curves, basin boundaries, attractors) as their shapes change may become a very
difficult task in maps in dimensions higher than 2. However, as we shall see also in this example, it is a powerful tool in
the case of two-dimensional maps.

First we shall show the transition of the basin from a smooth boundary to a fractal boundary with a repelling node
on the frontier, then the transition from a smooth boundary to a fractal boundary with a repelling focus on the frontier of
the basin, and the third situation will show the transition from a chaotic attractor to a chaotic repellor, via a homoclinic
bifurcation of a saddle fixed point on the frontier of the basin.

3.1 Fractal boundary of the immediate basin of attraction

Let us fix the values of the parameters a, b, c and we vary the parameter d. For the values a = —0.89,0 = 1, ¢ = —1 and
d decreasing from —1.15 to —1.5, we shall see a route from simply connected basic to mult connected and then simply
connected again but with fractal boundary.

For d = —1.15, as shown in Fig.1, we have a cyclic chaotic attractor of period 3. This 3-pieces chaotic attractor A is
the results of a cascade of flip bifurcations of cycles of order 3.2%, i = 0, 1, 2... (i.e. the standard Feigenbaum route starting
from a 3-cycle saddle). Its immediate basin Dy (A) is simply connected, while the total basin D(A) is non connected.
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The immediate basin Dy (A) is simply connected as long as the set Dy N LC' is connected. The contact bifurcation
of the boundary of the immediate basin with the critical curve LC, which occurs as d decreases, will lead to a multiply
connected immediate basin (as described in [21] and [23]). This can be seen in Fig.2 at d = —1.25. The attracting set is
still a 3-pieces cyclic chaotic attractor, and its immediate basin of attraction Dy is multiply connected, i.e. connected with
holes (or lakes) H;, as Dy N LC' is non connected. The lakes H; are preimages of H, which is numerically visible from
the value d = —1.151. This means that we have a bifurcation value “simply connected <+ multiply connected” of the
immediate basin Dy (A) between the values d = —1.150 and d = —1.151. As the parameter d is further decreased, the
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lakes become closer to the external boundary of Dy (see Fig.3). The dynamic behavior of these lakes is associated with the
structure of the set Dy N LC' : starting from the two-segments existing in the case shown in Fig.2 this set tends to become
again of one unique piece, as it is shown in Fig.4, so that the immediate basin Dy (A) from multiply connected will return
again simply connected (as in Fig.4). But now with a boundary which is not smooth (as it was in Fig.1), as infinitely
many points of non smoothness exist in the boundary. In Fig.4 it is possible to see that the lakes of the immediate basin
changed in bays. This bifurcation is characterized from the fact that the cape A crosses LC' (at a value of d between the
values d = —1.335 and d = —1.336), and then Dy N LC becomes connected again. The end points of the bays have now
a particular shape (see the enlargement shown in Fig.5), and are associated with the arborescent sequence of preimages
of a 2—cycle unstable node belonging to the boundary of Dj. The transition of the boundary from smooth to non smooth
occurs soon after this last contact bifurcation and it is associated with the local nature on this 2-cycle on the boundary. In
fact let us remark that in invertible maps an unstable cycle node cannot belong to basin boundary, which this is possible
in the case of noninvertible maps, and this occurrence leads to points of non smoothness on the boundary. In our case,
the eigenvalues S; and Sy of this 2-cycle are of opposite signs, S; < 0, S2 > 1 and |S1| < S5 for d > —1.36522. For
d = —1.36522 we get |S1| = Sz and for d < —1.36522 we obtain |S1| > S,. This leads to a repelling node of second
kind, which belongs to the frontier, together with all its preimages of any rank, and as the frontier has a cusp point (point
of non differentiability) in this 2-cycle, it follows that the frontier includes infinitely many points of non smoothness.
The restriction of the map to the frontier of the basin may however be chaotic or not. This depends on the existence of
homoclinic orbits for the cycles of this restriction.

3.2 Heteroclinic orbits

Let us fix the values a = —1, ¢ = —1.088, d = —0.46 and decrease b. In Fig.6 we show the situation when b = 1.004,
we have a 4-pieces cyclic chaotic attractor A around an unstable focus point O. The immediate basin of attraction Dy (A)
of the chaotic attractor is multiply connected and its boundary is given by the stable set W*(S) of a saddle fixed point
S. Notice that due to the existence of “holes” the stable set W*(.S) is non connected and its connected component
containing S is the external boundary of Dy. The other connected components are the boundaries of holes (or lakes) H_;,
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i > 1, which are preimages of the bay Ho (H_; = T, *(Ho) U T, *(Ho), H_; = Ty *(Hyp), i = 2,3 ). The critical
lines LC; =T i+1(LC’_1), 1 = 0,1,2, can also be used to detect an absorbing area A containing the chaotic attractor.
Notice that in Fig.6 the hole H_3 is close to, but below, the critical curve LC. As we decrease the value of the
parameter b, we shall determine an explosion of the preimages giving the holes, and the bifurcation occurs when the hole
H_3 has a contact with the critical curve LC (the bifurcation value is b* ~ 1.00305) and in the case shown in Fig.7, at
= 1.0024, and in its enlargement in Fig.8, there are infinitely many holes which are approaching the unstable focus O.
At the bifurcation value is b* ~ 1.00305 a contact occurs between H_3 and LC' in a point a9 € LC' = LCy. In this
bifurcation value the stable manifold W#(.S) is constitute of the boundaries 9. Dy, OH_;, i > 1, and the preimages of
the critical point ag. The preimage a_; = T3 1(ao) =T5 1(a0) € LC_; is located in the absorbing region A, this will
give rise to an infinite sequence of preimagesof a_; : a_,, =T, (n+1) (a—1), n > 1, which converge toward the unstable
focus O. In other words, at the bifurcation value b* there is the appearance of the first heteroclinic orbit connecting O to
S. This heteroclinic orbit, constitute of a_1, its images 7" (a—_1), n > 0, converging toward S, and its preimages a_,,
n > 1, converging toward O, is degenerate (or critical) since a_; € LC_;. The birth of this critical heteroclinc orbit at
the bifurcation value is followed by an explosion of (non critical) heteroclinic orbits for b < b*. Indeed, for b < b*, the
hole H_3 crosses the critical curve LC' and this crossing generates a new hole crossing LC'_; in a region having infinitely
many preimages converging to O, giving rise to an infinity of holes U_,, which converge toward O. In Fig.9 we show the
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Figure 8: Enlargement in the neighborhood of the focus O Figure 9: Infinity of heteroclinic orbits

situation far from the contact bifurcation, when the number of holes is increased very much. The stable set W#(S) is then
constituted of frontiers 9. Do, OH_;, i > 1 and OU_,,, n > 0, and also new holes may be created by contact with L.C' and
crossing (as we have shown above at b = b*). Thus the boundary of the basin clearly includes infinitely many heteroclinic
points belonging to different heteroclinic orbits connecting O to S; each orbit being formed of a point ¢ belonging to some
boundary in the region of the unstable focus O, together with its images and of its preimages by T3, 1. We notice however
that no chaotic behavior can be associated to such heteroclinic behavior up to now. This is possible only if there are also
heteroclinic orbits connecting .S to O, and on its turn this is possible only if the preimages of the rank-1 preimage of the
focus point O belongs to the frontier.

3.3 Contact bifurcation and homoclinic bifurcation

Differently from the previous case, let us now fix the values a = —1, b = 1, d = —0.9 and decrease the parameter c:
we shall describe the first homoclinic bifurcation of a saddle leading to the transition of a chaotic attractor into a chaotic
repellor.

At ¢ = —0.92 we have a chaotic attractor, shown in Fig.10, resulting from a cascade of flip bifurcations of cycles
of period 3.2¢, 5 = 0,1,2... (from a starting 3—cycle). As ¢ decreases there are more and more tongues of the chaotic
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area which are approaching the immediate basin boundary, as shown in Fig.11. Some extremity of such areas are denoted
by h;, i = 1,2.... Such points belong to the chaotic area and converge toward the invariant sets, but more and more of
them are approaching the boundary, as shown in Fig.12. The boundary of the basin includes a saddle .S and its stable
set W#(.S), and the regions are alternated on both sides of the unstable set of S. The branch of W*(S) entering inside
basin tends to the attractor so that the closure of this unstable set includes the whole chaotic area. As the tongues in the
chaotic area increase, they also approach more and more this branch of unstable set W*(S), as shown in the enlargement
in Fig.13, so that such arcs of unstable set of .S approach the stable set of S.

a=-1.000000 b= 1.000000 c= -945300 d= -.900000

2=-1.000000 b= 1.000000 c= -920000 d= -900000 oty

900

S D, )

-1.500 -
=400 1500

-1.500 -
=400 1.500

Figure 11: Tongues of the attractor which converge toward
Figure 10: Chaotic attractor W (S)

It is clear that when the contact bifurcation of the chaotic area with its basin boundary occurs, we shall have the point
h1 on the stable set of .S together with all its images, which are extrema of infinitely many tongues of the chaotic area
approaching S and its unstable set. For ¢ = ¢; = —0.94643 in Fig.12 the tongues’ extremities h;, ¢ = 1,2..., are close
to the contact with the boundary of the basin (i.e. W#(.5)), and converge in the direction of W*(.S) toward S alternating
on each side (due to a negative stable eigenvalue). This values of ¢; is very close to the value of contact bifurcation since
for co = —0.94644 < c; the chaotic attractor no longer exists, it disappears as attractor and a chaotic repellor exists in its
place. At this contact bifurcation the saddle S has its first homoclinic points, and we have a tangential contact between
one branch of the unstable set (the one entering in the chaotic area) and both the branches of the stable set W, _(.S) (due
to the negative eigenvalue). After the contact bifurcation there will be infinitely many transverse intersections between the
sets W*(.S) and W*#(.S) and thus infinitely many homoclinic orbits of the saddle .S, as shown in Fig.14 for ¢ = ¢ Thus
the chaotic repellor also includes the saddle S.

4 Conclusion

Numerical simulations are used to illustrate some contact bifurcation occurring in a noninvertible map of the plane,
leading to strong changes in the shape of the basins of attraction or in the structure of the invariant attracting sets. The main
object of our work has been that to emphasize the connection between contact bifurcations and homoclinic or heteroclinic
orbits of cycles belonging to the basin boundary.
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