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The dynamics of fractional-order systems have attracted increasing attention in recent years. In
this paper, we numerically study the bifurcations and chaotic behaviors in the fractional-order
simplified Lorenz system using the time-domain scheme. Chaos does exist in this system for a
wide range of fractional orders, both less than and greater than three. Complex dynamics with

interesting characteristics are presented by means of phase portraits, bifurcation diagrams and
the largest Lyapunov exponent. Both the system parameter and the fractional order can be taken

as bifurcation parameters, and the range of existing chaos is different for different parameters.
The lowest order we found for this system to yield chaos is 2.62.
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1. Introduction

In recent years, many scientists have become aware
of the potential use of chaotic dynamics in engi-
neering applications, such as electrical engineering,
information processing, secure communications,
etc. With the development of the fractional-order
calculus, fractional-order systems have received
much attention. Typically, chaotic systems remain
chaotic when their equations become fractional
[Hartley et al., 1995; Li & Chen, 2004a, 2004b;
Ahmad & Sprott, 2003; Zhang & Yang, 2009; Chen
et al., 2008; Li & Peng, 2004; Wu et al., 2008; Sheu
et al., 2008; Yu et al., 2009; Tam & Tou, 2008;
Mohammad & Mohammad, 2008].

Two methods have been mainly used in the pre-
vious literatures to solve fractional-order differential
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equations: frequency-domain methods [Sun et al.,
1984] and time-domain methods [Diethelm et al.,
2002; Deng, 2007a, 2007b]. The frequency-domain
methods have been most frequently used to inves-
tigate chaos in fractional-order systems (used in
[Hartley et al., 1995; Li & Chen, 2004a, 2004b;
Ahmad & Sprott, 2003; Zhang & Yang, 2009;
Chen et al., 2008]). Unfortunately, it has been
shown that this approach is not always reliable
for detecting chaos in such systems [Tavazoei &
Haeri, 2008, 2007]. In light of the limitations
of the frequency-domain approach, the numeri-
cal simulations of this paper are done using the
time-domain approach. Our choice within this
category is the improved version of the Adams—
Bashforth—-Moulton algorithm which is based on the
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predictor—corrector scheme. This method was intro-
duced by Diethelm et al. [2002] and has been
employed in [Li & Peng, 2004; Wu et al., 2008;
Sheu et al., 2008; Yu et al., 2009; Tam & Tou,
2008; Mohammad & Mohammad, 2008]|. In addi-
tion, Hartley et al. [1995] studied the effects of frac-
tional dynamics in Chua’s systems by varying the
total system order incrementally from 2.6 to 3.7,
which demonstrated that systems of “order” more
than three can exhibit chaos as well as other nonlin-
ear behavior. However, considering the undesirable
effects of using the frequency-domain approxima-
tion, the conclusions from that paper are doubtful.
To the best of our knowledge, that was the first
report concerning fractional-order systems with a
total order more than three. In this paper, we report
the first investigation of a fractional-order system
with an order greater than three using the time-
domain method. It will be shown from bifurcation
diagrams of the system that chaos exists when the
total order is 3.3.

Recently, a simplified Lorenz chaotic system
was reported by Sun and Sprott [2009]. It has the
same features as the Lii system, but a simpler alge-
braic form. In particular, the adjustable parame-
ter occurs in only two of the terms rather than in
four. However, the fractional-order variant of this
system has not been studied, and it is an ideal can-
didate for examining bifurcations since it has a sin-
gle adjustable parameter. In this paper, we focus
on the dynamic behaviors of this fractional-order
simplified Lorenz system. The paper is organized as
follows. Fractional-order derivatives and the numer-
ical algorithm for the solution of fractional-order
dynamical systems are presented in Sec. 2. In Sec. 3,
a time domain scheme is applied to the fractional-
order simplified Lorenz system. Bifurcations and
the largest Lyapunov exponent of the fractional-
order system are presented. Finally, we summarize
the results and indicate future directions.

2. Numerical Algorithm for
Fractional-Order Dynamical
Systems

According to the different definitions of fractional
derivatives [Butzer & Westphal, 2000; Podlubny,
|

1999; Samko et al., 1993], two approaches have
been primarily used to solve the fractional-order
equations: the frequency-domain method and the
time-domain method. The Caputo derivative defini-
tion involves a time-domain computation in which
nonhomogenous initial conditions are needed, and
those values are readily determined [Samko et al.,
1993]. This popular definition is given by

d*z(t) Jn_ad”m(t)
dte dtn

Dea(t) = J oz (¢),

(1)

where n := [«] is the first integer which is not less
than a and o > 0 but not necessarily o € N, z(" (¢)
is the ordinary nth derivative of z(t), and J? is the
f-order Riemann—Liouville (R-L) integral operator
given by

J%<t>=ﬁ / (t -1 lp(n)dr,  (2)

where T'(f) is the Gamma function with 0 <
6 < 1. The operator D¢ is commonly called the
Caputo differential operator of order ao. Compared
with the R-L derivative, the Caputo derivative is
much preferred since it is more popular in real
applications. We can specify the initial values of
2(0),2/(0),...,2(m=1(0), which typically have a
well-understood physical meaning and can be mea-
sured [Diethelm et al., 2002].

Here, we consider the fractional differential
equation with initial conditions

Dex(t) = f(t,x(t), 0<t<T
(k) (k) - (3)
2H(0) = x5, k=0,1,2,...,n—1

It is equivalent to the Volterra integral equation
[Diethelm & Ford, 2002].

[a]-1 k t
()= > w%ﬁ /0 (t — 1) f(r, 2 (t))dr
k=0
(4)

Set h = T/N,t; = jh,j = 0,1,...,N € ZT. Then
Eq. (4) can be discretized as follows

h* =

[a]—1 k a
_ ® g1 R
Th(tny1) = E Lol +mf(tn+laxlz(tn+l)) + T(a+2) : Oaj,n+1f(tj7$h(tj)) (5)

k=0
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where
n*t —(n —a)(n+1)%, =
Ujnp1 = (M= +2)*T +(n—j)* T —2(n—j+1)F, 1<j<n (6)
1, j=n+1
[a]— tk .
n+1 Z n+ + —sz nt1f t]vxh( )) (7>
s o N )
bt = (= +1)* — (n=§)*), 0<j<n ®)
The error estimate in this method is |
e= max |oft;) - ay(t;)| = O(hF)  (9) Sprott [2009)
in which p = min(2,1 + «). z=10(y — x)
This is called the Adams‘fBashfortthoulton j = —xz+ (24 — de)z + cy. (10)
predictor—corrector scheme [Diethelm et al., 2002; 8z
Diethelm & Ford, 2002; Diethelm, 1997], which Z=xy— 3

is a time-domain approach and is more effective
for investigating the dynamics of fractional-order
systems.

3. Dynamical Behaviors of the
Fractional-Order Simplified
Lorenz System

In this section, the chaotic dynamics of the
fractional-order simplified Lorenz system are ana-
lyzed. In particular, we identify a novel bifurca-
tion parameter, that is, the fractional-order a, 3,
of the derivative. The dynamics of the system are
also analyzed when c is considered as a bifurcation
parameter.

3.1. The fractional-order simplified
Lorenz system

The simplified Lorenz system with a single
adjustable parameter c is described by Sun andI

h&

-l = — T | T
Tnt1 $0+F(a+2) 0y 11
hB

yn+1—y0+m

n
+ ) agjn(—zsz +
i=0
h')’

Znil =20+ 55—
LR YO

["L’ZH yth

(24 — 4c)z; + cyj)}

8zF

Now, consider the fractional-order simplified Lorenz
system given by

d*x

= = 10—

o (y — )

B

% =—zz+ (24— 4c)z + cy> (11)
T

a ~ VT3

where «, 3,7 determine the fractional order of
the equation, and «, 3,7 > 0, but not neces-
sarily a,0,7v € N. When a = g = v = 1,
system (11) becomes the original integer order
simplified Lorenz system (10). By exploiting the
Adams—Bashforth-Moulton scheme, the fractional-
order simplified Lorenz equations (11) can be writ-
ten as

Tpia] + Z a1,j,n+110(y; — ;)

=0

) {[_xi—!-lzﬁ—kl + (24 — 4y + il

(12)

8%;
n+1
3+ :| + Z a37]:77f+1 <$] y] 3J )

7=0
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in which
1 n
Tp41 = T0 + (a) 2 b1,jn+110(y; — ;)
D L =
Ynir = 90+ Ty bajnt+1(—T;25 + (24 — dc)z; + cy;) (13)
j=0
1 8z,
it = 20F iy 2 s (‘”ﬂ'yﬂ' - 7)
where
he . = P .
bjnir=—(n=j+1)*=(n=j)%), 0<j<n
b2,jm+lzﬁ((n_3+1) —(n—4)7), 0<j<n (14)
hY . . .
b3jn+1 = 7((71 —Jj+1)7=(Mn-j)), 0<j<n
w0 —o)(n 1) =0
P Un =2 4 (=) = 2n =+ )T 0<G<n
B L CEOIGR SV j= %)
2,5,n+1 (n _]+ 2)5-!—1 N (n _j)ﬂ—i»l _ 2(7’l _]+ 1)B—|~1 0 J <n
I Al Ul VGRS Jj=
M =g (= =2 -+ 1 0 <

By exploiting the capabilities offered by the
predictor—corrector scheme mentioned above in
our simulations, the bifurcation diagrams indicate
chaos, which has been confirmed by calculating the
largest Lyapunov exponent in some cases using the
Wolf algorithm [Wolf et al., 1985].

3.2. Chaos and bifurcations with

different system parameter c

Let = 8 = ~v = 0.95, and vary ¢ from 2 to 8.
The initial states of the fractional-order simplified
Lorenz system are taken as 2(0) = —8.3458, y(0) =
—10.6753, and z(0) = 12.3088. The step size for ¢
is 0.005, and the resulting bifurcation diagram is
shown in Fig. 1(a). The chaotic motion identified is
validated by the positive Lyapunov exponent (LE),
which is calculated by Wolf algorithm and plotted
in Fig. 1(b). Compared with that of the integer-
order simplified Lorenz system as shown in Fig. 2
[Sun & Sprott, 2009], the fractional-order simplified
Lorenz system has the same tendency as its integer-
order counterpart, but the attractor is smaller. It is

chaotic over most of the range ¢ € [2.6,7.4], where
the largest Lyapunov exponents of the system are
positive. The figure suggests that the transition to
chaos is apparently different at the two extremes
of ¢. As ¢ increases from —oo to 2.5, the system
abruptly becomes chaotic at about ¢ = 2.5, whereas
a decrease in ¢ from 400 causes the fractional-
order system to enter chaos by pitchfork and period-
doubling bifurcations.

To observe the dynamic behavior, the phase-
space trajectory is shown in Fig. 3. The phase-space
diagrams have been plotted so as to visualize the
pitchfork bifurcation. In this case, two sets of sym-
metrical initial conditions have been used to show
two different attractors, which are almost com-
pletely superimposed in some cases. To distinguish
one from another, we plot them in blue and red,
respectively. From these figures, it is clear that as
the value of parameter ¢ decreases, a pitchfork bifur-
cation is observed. At ¢ = 8, the origin loses stabil-
ity by a supercritical pitchfork bifurcation, and a
symmetric pair of attracting fixed points are born.
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Fig. 1. Bifurcation diagram and the largest LE for the system (11) versus ¢ for g= 0.95. (a) Bifurcation diagram, (b) largest LE.

At ¢ = 7.7, a pair of coexisting stable limit cycles
is born. As ¢ decreases from 7.7, the two coexisting
unstable limit cycles expand as shown in Figs. 3(a)
and 3(b) and then merge at ¢ = 7.432 as shown
in Fig. 3(c). The merged limit cycle grows with
decreasing c as shown in Fig. 3(d). When ¢ decreases
further, a pitchfork bifurcation occurs at ¢ = 7.25,
where the attractor splits into two as shown in
Fig. 3(e). Then one circle of the attractor grows
while the other shrinks with decreasing ¢ as shown
in Fig. 3(f). At ¢ = 7.1, the limit cycles touch the
saddle point and become homoclinic orbits, and the
fractional-order system enters into chaos by a homo-
clinic bifurcation as shown in Fig. 3(g).

Fig. 2.

The bifurcation diagram of the integer-order simpli-
fied Lorenz system versus c.

3.3. Chaos and bifurcations with
different fractional order q

Now let @« = § = v = ¢, and vary the fractional
order ¢ from 0.9 to 1.15, but with a fixed sys-
tem parameter of ¢ = 5. The initial states of the
fractional-order simplified Lorenz system are the
same as above. With an increment of ¢ equal to
0.001, the bifurcation diagram is shown in Fig. 4(a).
The corresponding largest Lyapunov exponent is
shown in Fig. 4(b). The fractional-order simplified
Lorenz system is chaotic over most of the range
q € [0.93,1.07], where the largest Lyapunov expo-
nent is positive. At least, one periodic window is
observed when ¢ € [1.024,1.033], where the largest
Lyapunov exponent is zero.

To observe the dynamic behaviors, the periodic
window is expanded in steps of 0.0001 as shown
in Fig. 5(a). Similarly, two suitable sets of ini-
tial conditions have been selected, and the bifurca-
tion diagrams have been plotted in blue and red,
respectively, for visualizing the pitchfork bifurca-
tion. There exist four kinds of bifurcation in the
periodic window, including a tangent bifurcation, a
flip bifurcation, an interior crisis and an attractor
merging crisis. An interior crisis and an attractor
merging crisis occur when ¢ = 1.024. A flip bifur-
cation occurs when ¢ = 1.0315 and ¢ = 1.0263,
and a tangent bifurcation occurs at ¢ = 1.033.
An attractor merging crisis occurs at ¢ = 1.051.
The interior crisis and attractor merging crisis are
global bifurcations. A crisis occurs when a chaotic
attractor collides with an unstable periodic orbit
or its basin of attraction. Here, there exit two
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Fig. 3. State space plots for different values of ¢ (blue and

red attractors correspond to two symmetrical initial condi-
tions) (a) ¢ = 7.5, (b) ¢ = 7.44, (¢) ¢ = 7.432, (d) ¢ = 7.3,
() c=17.25,(f) c=7.15,(g) c=T7.1.

distinguishable crises: an interior crisis in which the
attractor touches a periodic orbit within its basin,
and an attractor merging crisis in which two or more
attractors simultaneously touch a periodic orbit on
the basin boundary that separates them [Sprott,
2003]. Consequently, the fractional-order parame-
ter can be taken as a bifurcation parameter, just
like the system parameter c.

As shown in Fig. 5(b) (with steps of 0.0005),
when the bifurcation parameter ¢ is decreased from
1.15, a pitchfork bifurcation occurs at ¢ = 1.12.
Two limit cycles, denoted in blue and red respec-
tively, coexist until the period-doubling bifurca-
tions occur at ¢ = 1.082. Then the fractional-order
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Fig. 4. Bifurcation diagram and the largest LE of the sys-
tem (11) versus g for ¢ = 5. (a) Bifurcation diagram,
(b) largest LE.

system enters into chaos by a series of period-
doubling bifurcations. When the fractional order is
less than 0.93, the fractional-order system converges
to a fixed point, so the lowest total order for the
fractional-order system to yield chaos is 2.79 in this
case.

3.4. Chaos and bifurcations with

different fractional orders o, 3,~
To study the dynamics of system (11) with differ-
ent fractional order, three cases are considered as
follows.

(1) Fix 8 = v = 1,c = 5, and let a vary. The
system is calculated numerically for a € [0.75,1.15]
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Fig. 5. Bifurcation diagrams of the system (11) versus ¢ for
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initial conditions). (a) ¢ € [1.023,1.034], (b) ¢ € [1.04,1.14].

with an increment of « equal to 0.001. The initial
states of the system are the same as above. The
bifurcation diagram is shown in Fig. 6(a). The cor-
responding largest Lyapunov exponent versus « is
plotted in Fig. 6(b). The fractional-order simplified
Lorenz system is chaotic over most of the range
€ [0.77,1.05], where the largest Lyapunov expo-
nent is positive. One periodic window appears when
the fractional order is « € [1.03,1.045], where the
largest Lyapunov exponent is zero. Transient chaos
is observed when « is less than 0.77.
Expanded bifurcation diagrams with two sym-
metrical initial conditions are shown in Fig. 7(a)
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Fig. 6. Bifurcation diagram and the largest LE of the sys-

tem (11) versus a for 8 = v = 1. (a) Bifurcation diagram,
(b) largest LE.

with steps of 0.0001, denoted by blue and red,
respectively. Considering the blue one first, when «
decreases from 1.13 to 1.1, xyax gradually increases
until it suddenly decreases at o« = 1.1. Three simi-
lar sudden changes occur when « € [1.07,1.08] with
a period-doubling route to chaos. Similar phenom-
ena take place for the red case. An attractor merg-
ing crisis occurs when o = 1.055. An expanded
periodic window with steps of 0.0001 is shown in
Fig. 7(b). Here also exist four kinds of bifurca-
tions, including a tangent bifurcation, a flip bifur-
cation, an interior crisis and an attractor merg-
ing crisis. Sudden changes are also observed in
this figure. In this case, the lowest order for which

chaos was found for the fractional-order system
is 2.77.
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Fig. 7. Bifurcation diagram of the system (11) versus « for 3 = v = 1 (blue and red attractors correspond to two symmetrical

initial conditions). (a) a € [1.05,1.13], (b) « € [1.028,1.044].

(2) Fix a =y =1,c =5, and let 5 vary. The system
is calculated numerically for 3 € [0.5,1.3] with an
increment of § equal to 0.001. The initial states of
the system are the same as above. The bifurcation
diagram is shown in Fig. 8(a). The largest Lyapunov
exponent versus (3 is plotted in Fig. 8(b). As shown
in Fig. 9(a), when [ decreases from 1.3, a pitchfork
bifurcation occurs at § = 1.22. Two limit cycles,
denoted in blue and red, respectively, coexist until
a period-doubling bifurcation occurs at § = 1.138.
Then the fractional-order system enters into chaos
by a series of period-doubling bifurcations. When [
increases from 0.5, a similar route to chaos is shown

12
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Fig. 8.
(b) largest LE.
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Bifurcation diagram and the largest LE of the system (11) with g for «

in Fig. 9(c). When g € [0.62,1.09], the fractional-
order system is chaotic with three periodic win-
dows at 3 € (0.692,0.701),5 € (1.08,1.085), and
B € (1.09,1.12), as shown in Figs. 9(b) and 9(d)
with steps of 0.0001. As in case (1), a tangent bifur-
cation, flip bifurcation, interior crisis and attractor
merging crisis exist in these periodic windows. In
this case, the lowest order of the fractional-order
system is 2.62, which is also the lowest order we
found for this system to yield chaos.

(3) Fix a = = 1,¢ = 5, and let 7y vary. The system
is calculated numerically for v € [0.7,1.6] with an

0.0

—o

[ =
)
B |

0.0

e
$,/
4
L__—®

'1>

0.0

-0.01

-0.03+

1.1 12 13

1. (a) Bifurcation diagram,



Bifurcations and Chaos in Fractional-Order Simplified Lorenz System 1217

B

10—|q.

""t-..... .,.-"'
7.5} .

Ll
p
N,
Yay,
n,

6 1 1 'l Il L L 1 1
0.5 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
(c)

1.04 1.051.061.071.08 1.09 1.1 1.11 1.12 1.13 1. 14
3
(b)

R el
ey, LT e

)(JH&X

0.69 0. 695 0.7 0. 705

(d)

Fig. 9. Bifurcation diagrams of the system (11) with 3 for @« = v = 1 (blue and red attractors correspond to two symmetrical
initial conditions). (a) 8 € [1,1.45], (b) 8 € [1.04,1.14], (c) 8 € [0.5,0.68], (d) 3 € [0.69, 0.705].

50
45}
40t
35}
30}
N525-
20}
15}
10}
5.

0 L . y T
070809 1 1112 1.3 1.41.5 1.6

The Largest LE

0.10
0.09
0.08] s
0.074
0.06
0.054
0.04
0.03 .
0.02 /\.
0.01 ol
0.004:
0.011e”
-0.021

-0.031
0.8 0.9 1.0 1.171.2 1.3 14 15

(b)

. ® %o
..um.."...uno“\ /.'\. 00,0 |5 & eae oot ...o". Ve

Fig. 10. Bifurcation diagram and the largest LE of the system (11) versus v for a = 8 = 1. (a) Bifurcation diagram,

(b) largest LE.



1218 K. Sun et al.

increment of v equal to 0.001. The initial states of
the system are the same as above. The bifurcation
diagram is shown in Fig. 10(a). The correspond-
ing largest Lyapunov exponent is plotted versus ~
in Fig. 10(b). Obviously, the dynamical behavior is
simpler than that of the previous two cases. It shows
that the fractional-order simplified Lorenz system is
chaotic over most of the range v € [0.86, 1.15] where
the largest Lyapunov exponent is positive. There
is a periodic window when the fractional order is
v € [1.05,1.06] where the largest Lyapunov expo-
nent is zero. The system converges to a fixed point
at v = 0.86, and the attractor expands in size as v
increases until v = 1.52. The lowest order of system
(11) for chaos is about 2.86 in this case.

4. Conclusions

In this paper, we studied the dynamics of the
fractional-order simplified Lorenz system. The
bifurcations and chaos in this system were numer-
ically investigated by varying the system param-
eter ¢ and the fractional-order ¢. Several typical
bifurcations are observed such as flip bifurcations,
tangent bifurcations, interior crisis bifurcations and
attractor merging crises. Chaos does exist in the
fractional-order simplified Lorenz system with a
wide range of fractional orders, which are not only
less than 3.0 but also greater than 3.0. The lowest
order for this system to yield chaos is 2.62. Future
work on the topic should include a theoretical analy-
sis of the fractional-order system, as well as in-depth
studies of synchronization control of this fractional-
order chaotic system.
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