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Simple Autonomous Chaotic Circuits
Jessica R. Piper, Student Member, IEEE, and J. C. Sprott

Abstract—Over the last several decades, numerous electronic
circuits exhibiting chaos have been proposed. Nonautonomous
circuits with as few as two physical components have been devel-
oped. However, the operation of such circuits has typically traded
physical simplicity for analytic complexity, or vice versa. In this
brief, we present two simple autonomous chaotic circuits using
only op-amps and linear time-invariant passive components. Each
circuit employs one op-amp as a comparator to provide signum
nonlinearity. The chaotic behavior is robust, and the circuits
offer simple analysis, while minimizing both physical and model
component counts.

Index Terms—Chaos, nonlinear circuits, oscillators.

I. INTRODUCTION

O
VER THE last three decades, many chaotic circuits have

been proposed, and there has been an ongoing debate

over which one is the “simplest” example of chaos. As is typical

in such debates, there has not been a decisive winner. The

debate has been complicated by the lack of a widely accepted

definition of exactly what constitutes a simple circuit. Further-

more, there have actually been two parallel debates: for the

simplest nonautonomous (driven) and the simplest autonomous

circuits.

For the purposes of this brief, we will consider three kinds

of simplicity. The first is mathematical simplicity, where we

can gauge how simple a class of function is roughly by

when it is covered in mathematics education. For example,

algebraic functions are simpler than exponentials. Likewise,

time-invariant systems are preferred over time-varying systems.

Second, a simple circuit should minimize both the number of

physical components and the number of idealized elements

required to accurately model the circuit. Third, we consider

simplicity from a practical standpoint, preferring robust stand-

alone circuits that can be constructed using the most common

components.

Based on our third qualification of simplicity, autonomous

circuits are preferred. However, we will begin our review of the

literature with nonautonomous circuits because this is where

the debate got its start.

Linsay’s driven inductor–varactor resonator is one of the first

simple chaotic circuits [1]. By employing the output resistance
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of the driving generator, Linsay’s circuit uses only two physical

components. One might think that Linsay had won the race

before anyone else had left the gate. However, the chaos in

Linsay’s circuit relies on the nonlinear capacitance of the

diode. Therefore, the mathematical model of the circuit is fairly

complex.

Deane’s nonlinear resistance–inductance–capacitance circuit

[2] is a particularly interesting but often overlooked case of

chaos in a passive circuit. It relies on the saturation of an

iron core inductor for its nonlinearity. Therefore, the model

inductance changes in time and exhibits hysteresis (memory)

effects.

The system proposed by Murali et al. [3] uses only three

components on paper, but the nonlinear resistor alone requires

ten active and passive devices to model. However, in contrast to

the previously mentioned contenders, the mathematical analysis

of the Murali–Lakshmanan–Chua circuit relies on piecewise-

linear algebraic functions, so it is mathematically simpler.

One of the most recent claims to simplest nonautonomous

chaos is Lindberg et al.’s single-transistor chaotic resonator

[4]. This circuit uses one transistor, two resistors, and one or

two capacitors. The operation is based on a mechanism that

Lindberg et al. characterize as “integration interruption,” which

uses both forward and reverse active transistor modes.

In the realm of autonomous circuits, Chua’s circuit was

among the first to be proposed [5]. Chua’s circuit has the ben-

efits of mathematical simplicity (via piecewise linear algebraic

functions), but as with its nonautonomous variant mentioned

previously, the physical component count is not minimized.

Tsubone and Saito [6] proposed a second-order system that

is driven to chaos by the action of a hysteretic switch. While the

system equation is simple, the hysteresis in the switching con-

dition means that the system is not time invariant. In addition,

their circuit is relatively elaborate.

In the last decade, chaotic systems written as jerk equations

have come into fashion. Jerk equations offer an exceptionally

simple notation for higher order systems. One system that has

received considerable attention [7], [8] is

˙̇ẋ + Aẍ + Bẋ = C (sgn(x) − x) (1)

where the signum function sgn(x), which can be conveniently
approximated using an op-amp without negative feedback, is

defined as

sgn(x) =

{

−1, for x < 0
0, for x = 0
1, for x > 0.

(2)

Elwakil and Kennedy [8] implemented the system of

(1) using a state variable topology. This topology requires

one op-amp for each integration or gain block, so that it
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trades simplicity of analysis for increased component count.

Specifically, the circuit in [8] requires eight resistors, three

capacitors, and five op-amps. By making one of the integration

stages purely passive, Sprott [7] reduced the component count

for a variant of this system to five resistors, three capacitors,

and three op-amps.

In this brief, we examine two further simplified realizations

of (1), each using one active integrator and a passive second-

order integrator. The first, which for shorthand we refer to as

C C C , uses four resistors, three capacitors, and two op-amps.

The second, which we designate C L C , uses two resistors, two

capacitors, one inductor, and two op-amps. These circuits were

proposed in [10], although not tested.

II. ANALYSIS OF THE SYSTEM

Using the phase variable x = [x1, x2, x3]
T , we can rewrite

the system equation (1) as

ẋ =





0 1 0
0 0 1

−C −B −A



x +





0
0

Csgn(x1)



 . (3)

For the purpose of analysis, (3) can be divided into three

linear regions, which are piecewise continuous. Specifically, we

consider an inner region arbitrarily close to the origin (where

|x1| < ε for some arbitrarily small positive constant ε) and two
outer regions where x1 is well away from the origin. In the

outer regions, the term Csgn(x1) is simply a constant. Thus,
the outer regions are defined by two affine equations with the

same Jacobian as (3), and they have the same eigenvalues.

In the inner region, we connect the two outer regions with a

straight line, so that

sgn(x1) − x1 ≈ x1/ ε, for |x1| < ε.

Therefore, in this inner region, the constant term disappears,

and the system equation is

ẋ =





0 1 0
0 0 1

C/ ε −B −A



x. (4)

In the circuit implementations, A, B, and C are functions

of the passive components, which all have positive real values.

Furthermore, both the CCC and CLC circuits have a similar

distribution of eigenvalues. In the outer regions, there are a

single negative real eigenvalue γ and a complex conjugate pair
of eigenvalues with positive real part σ. In the central region, the
real eigenvalue γ is positive, while the real part of the complex
conjugate pair σ is negative.
In a qualitative sense, the negative real eigenvalues in the

outer regions provide direct-current sinks to the critical points at

x = (±1, 0, 0), but the positive σ causes increasing oscillation
about these points. When the amplitude of oscillation grows big

enough to bring x into the neighborhood of the critical point at

(0, 0, 0), the large positive real eigenvalue acts as a repeller,

“shooting” the trajectory out of the inner region.

For the purpose of simulation, we instead model the signum

function as k ta nh (Mx), where larger values of M more

closely approximate sgn(x), and the constant k represents the
total voltage swing of the comparator, which, for real op-amps,

will be less than the total supply voltage. This approximation

is helpful because ta nh (Mx) is continuous and differentiable,
and, furthermore, its derivative is continuous.

The two circuits were simulated using the semi-implicit

Crank–Nicholson algorithm, using an absolute error tolerance

of 10−12, relative error tolerance of 10−4, and an initial time

increment of 50 µs. The simulations were run for 100 000
points, corresponding to 5 s of simulation time, and the first

2.5 s was thrown away to dispense with transients related to the

initial conditions.

III. CCC CASE

In the circuit in Fig. 1(a), R1-C2-R2-C3 forms the passive

second-order integrator, while Rc-R-C1-U1a forms the active
integrator. Applying nodal analysis, and considering V C3 as

the phase variable x1, this circuit solves (1) with the parameters

given by

A =
R + R2

RR2C3

+
R1 + R2

R1R2C2

(5)

B =
R + R1 + R2

RR1R2C2C3

(6)

C =
1

RR1R2C1C2C3

. (7)

A practical version of the circuit can be built with

R1 = R2 = 4 7 kΩ, R = 100 kΩ variable, RC = 1 MΩ, C1 =
1 nF, C2 = 10 nF, and C3 = 2 0 nF. For R = 2 7.8 kΩ, A =
6.86E 3 s−1, B = 9 .02 E 6 s−2, and C = 7.4 0E 10 s−3. Depend-

ing on the setting of the bifurcation parameter R, the primary
observed frequency will be in the range of 350–550 Hz. At

some settings of R, there will also be strong low-frequency
components (in the range of 2 Hz) as the trajectory slowly

jumps between lobes.

The circuit was constructed using a TL084 quad op-amp,

powered by a single 9v battery. The two extra sections of the

op-amp were used to buffer the voltages of capacitors C2 and

C3. A TLE2426 “rail splitter” was used to generate a ground

reference for the circuit, but similar results are obtained using a

resistive voltage divider of two 10k resistors and suitable bypass

capacitors. Alternately, one could use two batteries to make a

bipolar supply.

The comparator resistor RC needs to be scaled according to

the output swing of the comparator op-amp in order to prevent

saturation of the integrator. For the TL084 run from a single

9v supply, the observed saturation voltages were +3.76v and
−2.96v. This asymmetry was included in the numerical model
as an output swing of ±3.36 V and an offset of 0.4 V, but no
attempt was made to model the slew rate or the input impedance

of the op-amp.

As R is increased, the real eigenvalue migrates toward the

origin. For the complex conjugate eigenvalues, ω decreases in
magnitude as R is increased, while σ crosses into the right

half-plane around R = 15 kΩ, increases to a maximum of

106 around R = 2 0 kΩ, and then decreases and returns to the
left half-plane around R = 70 kΩ. Referring to the bifurcation
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Fig. 1. CCC circuit. (a) CCC schematic. (b) Theoretical bifurcation diagram for the CCC circuit.

Fig. 2. V C2 versus V C3 for several values ofR, CCC circuit: (a), (c) are from simulation; (b), (d) are oscilloscope photos of the circuit output. (a)R = 49.8 kΩ.
(b) R = 49.8 kΩ. (c) R = 27.8 kΩ. (d) R = 27.8 kΩ.

diagram Fig. 1(b), the onset and the demise of chaos correspond

to σ > 0.
Fig. 2 shows comparison plots in the V C3-V C2 plane be-

tween the simulated and observed behavior for several values of

R. For R = 4 9 .8 kΩ, the solutions of both the simulation and
the physical circuit are stable, although as seen in the plots, the

physical circuit has one extra loop in the upper lobe. Numerical

experiments indicated that while the location of the stable

region was controlled by the bifurcation parameterR, the detail
of the structure was dependent on the effective offset of the

comparator. For R = 2 7.8 kΩ, both the simulation and the cir-

cuit exhibit chaos. For the chaotic attractor shown in Fig. 2(c),

the Lyapunov exponent spectrum was calculated as λ =
〈0.1880, 0,−7.04 5 〉 (ms)−1, following the procedure in [9].

At the upper end of the range of R, a sinusoidal solution was
observed in both the simulation and the experiment; however,

the value of R in the simulation was greater than R for stable

oscillation in the circuit (not shown). Likewise, stable R was

less in the simulation than in experiment at the other end of the

range. This spreading is likely due to dissipation in the physical

circuit, which does not exist in the model. Referring again to

the bifurcation diagram [see Fig. 1(b)], periodic solutions are
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Fig. 3. CLC circuit. (a) CLC schematic. (b) Theoretical bifurcation diagram for the CLC circuit.

predicted by the model around R = 2 0 kΩ, but no stable region
was observed in the physical circuit around that value of R.

IV. CLC CASE

The circuit for the CLC case is given in Fig. 3(a). Here,

L-C2 forms the second-order passive integrator. To avoid the

nonlinear and hysteresis effects of core saturation, an air-core

inductor was employed. The inductor used in the test circuit was

quite compact, measuring 1.5 cm tall by 1.1 cm in diameter. The

series resistance of the inductor RL was included in the model.

The circuit parameters are given by

A = RL/ L + 1/ RC2 (8)

B = (1 + RL/ R)/ LC2 (9)

C = 1/ RC1LC2. (10)

The circuit was constructed with C1 = 4 .7 nF, C2 = 1 µF,
L = 0.1 H, RL = 105 Ω, RC = 4 75 kΩ, and R variable from

68k to 168k (a precision 100k potentiometer was used in series

with a fixed 68k resistor). Note that for the inductor used,RL/ L
dominates A, whereas RL/ R can be neglected in B, so that the
parameters A and B can be treated as constants. However, RL

has a strong effect on the eigenvalues, and as RL decreases,

the real part σ of the complex conjugate pair increases. For
inductors with different series resistance, the component values

will need to be adjusted to achieve bounded chaos. For the given

components, A = 1.15 E 3 s−1, B = 1.08E 7 s−2, and C ranges

between about 2.9E10 and 1.4E10 s−3. In many regions, there

is a strong frequency component around 510 Hz, although in

the chaotic regions, the spectrum is considerably more spread

out than in the CCC case.

A TL084 op-amp was used, running from a bipolar ±9v
supply. The output of the comparator op-amp was +8.2v and
−7.8v. The amplitude and the offset were included in the CLC
simulation, but the effects of the op-amp input impedance and

the slew rate were neglected. All simulated runs were started

with initial conditions x1 < 0, x2 = x3 = 0. The outputs taken
from the circuit were V C2, corresponding to x1, and V C1, cor-

responding to (1 + RL/ R)x1 + (RLC2 + L/ R)x2 + LC2x3.

As R is decreased, both the inner and outer region eigen-

values migrate away from the origin. The real part of the

outer complex conjugate eigenvalues crosses the imaginary axis

around R = 186 kΩ, corresponding to the bounded solution
at the right of the bifurcation diagram [see Fig. 3(b)]. For

R < 75 kΩ, the solution becomes unbounded. The maximum
value of σ for a bounded solution is around 500, considerably
larger than in the CCC circuit.

Several typical chaotic and periodic phase portraits in the

V C2-V C1 plane are shown in Fig. 4. The simulated and

experimental results agreed closely. In contrast to the CCC

circuit, the experimental CLC circuit exhibited many stable

regions, including (in addition to those shown) periods 2 and

7 on a single lobe, doubled orbits of 6, 8, 10, and 12 on a

single lobe, as well as more complicated periods occupying

both lobes. For the chaotic region with R = 79 .0 kΩ shown

in Fig. 4(a), the Lyapunov exponent spectrum was calculated as

λ = 〈0.3 9 3 7, 0,−1.5 5 3 6〉 (ms)−1.

It is worth remarking that while the solutions forR > 14 0 kΩ
presented in Fig. 4 all reside on the bottom lobe, symmetric

solutions lying on the upper lobe are also possible, given initial

conditions where x1 > 0, x2 = x3 = 0. Indeed, on startup,
with R initially set to 168 kΩ and gradually lowered, the

experimental circuit solutions remain on the upper lobe until

around R = 13 8 kΩ, where they fl ip to the bottom lobe. The
solutions for R < 14 0 kΩ are not effected by initial conditions.

V. CONCLUSION

As outlined in Section I, different definitions of what con-

stitutes a simple chaotic circuit have been proposed during

this 30-year debate. All of the previous examples have pushed

the current state of the art and increased our fundamental

understanding of the phenomena of chaos. Therefore, picking

a “winner” is something of a moot point.
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Fig. 4. Simulation and experiment for CLC, V C2-V C1 plane. (a), (b) Chaotic solution on two lobes. (c), (d) Period 3 on a single lobe. (e), (f) Period 5 on a
single lobe. (a) R = 79.0 kΩ. (b) R = 79.0 kΩ. (c) R = 1 1 6 .5 kΩ. (d) R = 1 1 3 .9 kΩ. (e) R = 1 24.9 kΩ. (f) R = 1 22.9 kΩ.

On the other hand, the circuits described in this brief of-

fer several practical advantages. First, the system equation is

straightforward, and the nonlinearity is simply defined. Second,

the passive components are strictly linear and time invari-

ant. Third, both physical and model component counts are

minimized.

However, most importantly, the present circuits are general

and robust. That is, one can buy all the parts to successfully con-

struct either circuit at Radio Shack, with minimal substitution.

Tolerances and layout are not particularly critical. The circuits

have been successfully constructed using both electrolytic and

stacked film capacitors and can be made very compact. In

principle, they are also suitable for integration if the passive

components are scaled appropriately. In this sense, the present

circuits offer an egalitarian version of chaos, accessible to an

experimenter or an enthusiast, while still providing insight to

an engineer or a theoretician.
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