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University of Tébessa (12002), Algeria

†Department of Physics, University of Wisconsin,
Madison, WI 53706, USA

‡zeraoulia@mail.univ-tebessa.dz
‡zelhadj12@yahoo.fr

§sprott@physics.wisc.edu

Received 10 February 2011
Revised 21 June 2011

Robust chaos is defined as the absence of periodic windows and coexisting attractors in
some neighborhood of the parameter space since the existence of such windows in the
chaotic region implies fragility of the chaos. In this paper, we introduce a new terminol-
ogy called robustification of chaos, which means creating robust chaos (in the sense of
the above definition) in a dynamical system. As a first step, a new chaotification (robus-
tification) method to generate robust chaos in planar maps is presented using simple
piecewise smooth feedback to create a border collision bifurcation in the resulting sys-
tem under some realizable conditions. The results are applied to an elementary example
to illustrate the validity of the proposed method.
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1. Introduction

Chaos is the idea that a system will produce very different long-term behaviors
when the initial conditions are perturbed only slightly. Anticontrol of chaos is a
technique used to create or enhance the system complexity for some novel, time-
or energy-critical interdisciplinary application. Examples include high-performance
circuits and devices, liquid mixing, chemical reactions, biological systems, crisis
management, secure information processing, and critical decision-making in politics,
economics, as well as military applications, etc. There are several works that focus
on this topic. In particular, chaos and bifurcation theories are the main tools used
in analyzing anticontrol of chaos, and it can be implemented by the suitable design
of controllers, devices, and circuitry.

Robust chaos is defined by the absence of periodic windows and coexisting
attractors in some neighborhood of the parameter space. The existence of these
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windows in some chaotic regions means that small changes of the parameters would
destroy the chaos, implying the fragility of this type of chaos. The notion of robust
chaos was first discussed in the early 1992 by Majumdar and Mitra in [28] where
they identify a quadratic family of dynamic optimization models and they prove
that the resulting chaos is robust in the above sense. A very same phenomenon
related to electronics was subsequently published with the very same name in [29].
An overview of some important issues concerning the robustness of chaos in dynam-
ical systems and their applications to the real world were given in [12].

There are many practical applications that require robust chaos [12, 28, 29] such
as in communications and spreading the spectrum of switched-mode power sup-
plies to avoid electromagnetic interference [10, 11] where it is necessary to obtain
reliable operation in the chaotic mode, and thus robust chaos is required. Practical
examples of demonstrating robust chaos can be found in electrical engineering as
shown in [12, 13, 21]. The most important results about robust chaos in dynamical
systems and its real applications can be found in [3] along with many elementary
examples and conjectures. In particular, robust chaos is an essential feature result-
ing from the border collision bifurcations observed in piecewise systems [12, 13, 21].
In fact, many physical and engineering systems have been found that are governed
by a class of continuous or discontinuous maps [12, 13, 21] where the discrete-time
state space is divided into two or more compartments with different functional
forms of the map separated by borderlines [12, 13, 21]. On the other hand, many
chaotification methods have been proposed to create or enhance the system com-
plexity for novel, time- or energy-critical interdisciplinary applications. Examples
include high-performance circuits and devices, liquid mixing, chemical reactions,
biological systems, crisis management, secure information processing, and critical
decision-making in politics, economics, and military applications. In other words,
anticontrolling chaos produces chaotic behavior in a system that would not oth-
erwise be chaotic [1, 2, 6–9, 16–20]. For example, these chaotification schemes were
presented for discrete mappings using Lyapunov exponents, or by the use of several
modified versions of the Marotto theorem [4, 5, 9–15], or by the use of the Li–Yorke
definition of chaos [14].

Some recent works on robust chaos can be found in [23–25]. Indeed in [23],
the critical behavior of the Lyapunov exponent near the transition to robust chaos
via type-III intermittency was determined for a 1D singular maps. The critical
boundaries separating the region of robust chaos was calculated along a critical
exponent (as a function of the order of the singularity of the map) expressing the
scaling of the Lyapunov exponent along the critical curve corresponding to the
type-III intermittency. This result contrasts with the well-known predictions for
the scaling behavior of the Lyapunov exponent in type-III intermittency. In [24],
an extension of several proposed methods to construct 1D chaotic maps [26, 27]
with exactly known natural invariant measure. The first method was proposed
for the construction of maps with robust chaos and prescribed invariant measure
and constant Lyapunov exponent. The second method was obtained by relaxing
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one condition in the approach described in [26, 27] to construct robust chaos with
prescribed constant invariant measure and varying Lyapunov exponent. The third
method was based on an extension of a condition in [26, 27] and provides a new
method to construct robust chaos with exactly computed invariant measure and
known varying Lyapunov exponent. The fourth method was based on the use of
diffeomorphisms to construct maps with robust chaos with any number of param-
eters and prescribed invariant measure and Lyapunov exponent. An example of
robust chaos in continuous time systems can be found in [25]. Indeed, a description
of the regular self-organization observed numerically in natural phenomena mod-
eled by differential equations was presented. A classification of periodic and chaotic
(robust) behaviors was given in several regions of bifurcation parameters of a two
Rôssler’s and a chemical oscillators.

The essential motivation of the present work is to create robust chaos in general
2D discrete mappings via the controller of a simple piecewise smooth function under
some realizable conditions.

2. Robustifying 2D Maps Using a Piecewise Smooth
Feedback Controller

In this section, we present our method for robustifying chaos in 2D mappings. For
this purpose, consider the general two-dimensional map (not necessarily chaotic) of
the form f(x, y, ρ) = (f1(x, y, ρ), f2(x, y, ρ)) where the function f is assumed to be
locally continuously differentiable and depends on a single parameter ρ. The goal
of the control is to create a border collision bifurcation leading to robust chaos in
the simplest way, i.e. by considering the controlled map given by

g(x, y, ρ) =

(
g1(x, y, ρ) = f1(x, y, ρ) + α|x|
g2(x, y, ρ) = f2(x, y, ρ) + β|x|

)
, (1)

where α and β are real bifurcation parameters to be determined. The line x = 0
divides the phase plane into two regions R1 = {(x, y) ∈ R

2, x < 0} and R2 =
{(x, y) ∈ R

2, x > 0}. The controlled map (1) is a piecewise smooth map since the
controller u(x, y) = (α|x|, β|x|) is also smooth. It is also clear that the functions f1

and f2 are both continuous and have continuous derivatives, and thus the controlled
map g is continuous, but its derivative is discontinuous at the borderline x = 0.
Furthermore, it is clear that the one-sided partial derivatives at the border are
finite, and in each subregion R1 and R2, the controlled map (1) has only two fixed
points P1 and P1 for values ρ∗ of the parameter ρ by assuming that the equations
f1(x, y, ρ) + α|x| = x and f2(x, y, ρ) + β|x| = y have only one root P1 and P2,
respectively, for some ranges of the parameters ρ, α and β. The control design
u(x, y) leads to systems of linear inequalities for the unknown parameters α and
β in terms of the sets (βj)1≤i≤4 and (γj)1≤i≤4 assumed to be known and defined
by ∂f1(x,y,ρ)

∂x (P1) = β1,
∂f1(x,y,ρ)

∂y (P1) = β2,
∂f2(x,y,ρ)

∂x (P1) = β3,
∂f2(x,y,ρ)

∂y (P1) = β4,
∂f1(x,y,ρ)

∂x (P2) = γ1,
∂f1(x,y,ρ)

∂y (P2) = γ2,
∂f2(x,y,ρ)

∂x (P1) = γ3 and ∂f2(x,y,ρ)
∂y (P1) = γ4.
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It was shown in [13] that the normal form of the controlled map (1) is given by

N(x, y) =




(
τ1 1

−δ1 0

)(
x

y

)
+

(
1

0

)
µ, if x < 0

(
τ2 1

−δ2 0

)(
x

y

)
+

(
1

0

)
µ, if x > 0

, (2)

where µ is the new bifurcation parameter of the map (2). The normal form (2) has
two fixed points PL = ( µ

1−τ1+δ1
, −δ1µ

1−τ1+δ1
) ∈ R1 and PR = ( µ

1−τ2+δ2
, −δ2µ

1−τ2+δ2
) ∈ R2

(with eigenvalues λ1,2 and ω1,2, respectively). The stability of these fixed points is
determined by the eigenvalues of the corresponding Jacobian matrix, i.e. λ = 1

2 (τ ±√
τ2 − 4δ). Here µ is a parameter and τi, δi, i = 1, 2 are the traces and determinants

of the corresponding matrices of the linearized map in the two subregions R1 and
R2 evaluated at P1 and P2, respectively, that is A1 =

“β1 β2
β3 β4

”
+

“−α 0
−β 0

”
and

A2 =
“γ1 γ2

γ3 γ4

”
+

“α 0
β 0

”
. In the case of the controlled map (1), the values of τi, δi,

i = 1, 2 are given by τ1 = −α+β1+β4, τ2 = α+γ1+γ4, δ1 = ββ2−αβ4+β1β4−β2β3,
and δ2 = αγ4−βγ2 +γ1γ4−γ2γ3. It was shown in [12] that robust homoclinic chaos
(a kind of persistent chaos in low dimensions [22]) occurs in the piecewise smooth
map of the form (2) if one of the following conditions holds:

(a) {
τ1 > 1 + δ1, and τ2 < −(1 + δ2)

0 < δ1 < 1, and 0 < δ2 < 1
, (3)

where the parameter range for a boundary crisis is given by

C1 : δ1τ2λ1 − δ2λ1λ2 + δ2λ2 − δ1τ2 + δ1τ1 − δ1 − λ1δ1 > 0. (4)

Here, inequality (4) determines the condition for stability of the chaotic attrac-
tor of the map (1). The robust chaotic orbit persists as τ1 is reduced below
1 + δ1.

(b) 


τ1 > 1 + δ1, and t2 < −(1 + δ2)

δ1 < 0, and − 1 < δ2 < 0

C2 :
λ1L − 1

τ1 − 1 − δ1
>

λ2R − 1
τ2 − 1 − δ2

. (5)

The condition for stability of the chaotic attractor is also determined by (4).
However, if the third condition of (5) is not satisfied, then the condition for the
existence of a chaotic attractor changes to

C3 :
ω2 − 1

τ2 − 1 − δ1
<

(τ1 − δ1 − λ2)
(τ1 − 1 − δ1)(λ2 − τ2)

. (6)
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(c) The remaining ranges for the quantity τ1,2, δ1,2 can be determined in some
cases using the same logic as in the above two cases, or there is no analytic
condition for a boundary crisis, and it has to be determined numerically. Thus,
from the above three cases, we shall show that for certain values of α and β, the
controlled map (1) has robust homoclinic chaos, where the values (βi)1≤i≤4 and
(γi)1≤i≤4 are assumed to be known. Indeed, for the first case (a), condition (3)
gives the following inequalities:{

φ1 < β2β < min{φ2, φ3}
max{φ4, φ5} < γ2β < φ6

, (7)

where φ1 = αβ4 − β1β4 + β2β3, φ2 = β1 −α + β4 + αβ4 − β1β4 + β2β3 − 1, φ3 =
αβ4 − β1β4 + β2β3 + 1, φ4 = α + γ1 + γ4 + αγ4 + γ1γ4 − γ2γ3 + 1, φ5 = αγ4 +
γ1γ4 − γ2γ3 − 1, and φ6 = αγ4 + γ1γ4 − γ2γ3. The two inequalities in (7) hold
if and only if φ1 < φ2, φ1 < φ3, φ4 < φ6, and φ5 < φ6, that is,

α < min{β1 + β4 − 1,−γ1 − γ4 − 1}. (8)
The stability of the resulting homoclinic chaos can be tested using inequality

(4). In fact, it is difficult to solve rigorously for this stability condition (or the
conditions for the two remaining cases (b) and (c) above) due to the presence of
complicated square formulas, but one can use numerical estimates. From (7), it is
clear that the value of the parameter β depends mainly on the signs of β2 and γ2.
If β2 > 0 and γ2 > 0, then (7) becomes


φ1

β2
< β <

min{φ2, φ3}
β2

max{φ4, φ5}
γ2

< β <
φ6

γ2

. (9)

If β2 < 0 and γ2 < 0, then (7) becomes


φ1

β2
> β >

min{φ2, φ3}
β2

max{φ4, φ5}
γ2

> β >
φ6

γ2

. (10)

If β2 > 0 and γ2 < 0, then (7) becomes


φ1

β2
< β <

min{φ2, φ3}
β2

max{φ4, φ5}
γ2

> β >
φ6

γ2

, (11)

that is,

max
{

φ1

β2
,
φ6

γ2

}
< β < min

{
min{φ2, φ3}

β2
,
max{φ4, φ5}

γ2

}
. (12)
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If β2 < 0 and γ2 > 0, then (7) becomes


φ1

β2
> β >

min{φ2, φ3}
β2

max{φ4, φ5}
γ2

< β <
φ6

γ2

, (13)

that is,

max
{

min{φ2, φ3}
β2

,
max{φ4, φ5}

γ2

}
< β < min

{
φ1

β2
,
φ6

γ2

}
. (14)

If β2 = 0 and γ2 > 0, then (7) becomes


φ1 < 0 < min{φ2, φ3}
max{φ4, φ5}

γ2
< β <

φ6

γ2

. (15)

The remaining cases (b) and (c) are similar.

3. Example

This paper proposes a chaotification (robustification) algorithm for 2D discrete
mappings, which is a topic that has been extensively studied over the last decade
as indicated by [1, 2, 6–9, 16–20] and references therein. The significance of our work
relative to the existing literature is that we present a new method for robustify-
ing chaos in two-dimensional discrete maps based on the construction of a simple
piecewise smooth feedback controller. In addition, the main assumptions here are
not complicated, which makes the result practical and attractive. As an example
illustrating the conditions and conclusions in the proposed method, consider the
following 2D generalized Hénon mapping:

f(x, y) =

(
1 − 1.4(1 − ρ)x2 + y

0.3x

)
. (16)

To verify the conditions of the previous method, assume that α = −1.4ρ and β = 0.
Thus the controlled version of the map (16) is given by

f(x, y) =

(
1 − 1.4(1 − ρ)x2 + y − 1.4ρ|x|

0.3x

)
. (17)

It is easy to check numerically that the controlled map (10) satisfies the conditions
C2 and C3 given by (5) and (6), respectively. Indeed, consider the critical curves
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corresponding to the conditions (4), (5), and (6) as follows:


C1 :
λ1 − 1

τ1 − 1 − δ1
− ω2 − 1

τ1 − 1 − δ2
= 0

C2 : (τ2 − λ2)λ1 + τ1 − τ2 − δ1 = 0

C3 :
ω2 − 1

τ2 − 1 − δ2
− δ1(τ1 − δ1 − λ2)

(τ1 − 1 − δ1)(δ2λ2 − δ1τ2)
= 0

. (18)

Applying Newton’s method for finding roots of an algebraic equation with an error
of 10−6 to system (18), then Fig. 1 shows that the curve (C2) has an intersection
with the ρ = 0 axis at ρ = 0.0866592234, which means that conditions (5) hold for
ρ ∈ [0, 0.0866592234], while the curve (C1) does not intersect the ρ = 0 axis, then
conditions (4) do not hold for all ρ, and the curve (C3) intersects the ρ = 0 axis
also once at ρ = 0.493122734, then condition (6) holds when ρ ∈ [0.493122734, 1].
We note that this property is absent for ρ = 1.

Thus the controlled map (17) displays robust (the attractor is unique) homo-
clinic chaos when ρ ∈ [0.493122734, 1]. This result is also verified numerically by
computing Lyapunov exponents and the bifurcation diagram as shown in Fig. 2.
An example of such a chaotic attractor is shown in Fig. 3.

For ρ < 0.493122734, the chaos exhibited by the controlled map (17) is not
robust in some ranges of the variable ρ because there are numerous small periodic
windows as shown in Figs. 4(a) and 4(b), for example the period-8 window at
ρ = 0.025. The contribution and importance of the method is that parameters can
be chosen to produce chaos in the Hénon map (17), and the robustification allows

Fig. 1. Critical curves corresponding to the conditions (4), (5) and (6) for the controlled map (17).
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(a)

(b)

Fig. 2. (a) Variation of the Lyapunov exponents of the controlled map (17) for 0 ≤ ρ ≤ 1. (b) The
bifurcation diagram of the controlled map (17) for 0 ≤ ρ ≤ 1.

Fig. 3. A robust chaotic attractor with its basin of attraction (in white) obtained from the
controlled map (17) for ρ = 0.5.
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(a)

(b)

Fig. 4. (a) Variation of the Lyapunov exponents of the controlled map (17) for 0.02 ≤ ρ ≤ 0.03.
(b) The bifurcation diagram of the controlled map (17) for 0.02 ≤ ρ ≤ 0.03, showing a period-8
attractor obtained for ρ = 0.025.

one to produce robust chaos over a larger than normal parameter interval as shown
in the bifurcation diagrams for map (17).

4. Conclusion

We have reported a new chaotification (robustification) method for planar mappings
based on a piecewise smooth feedback controller. The significance of the results is
discussed, and an example is provided to illustrate the conditions and conclusions
of the proposed method.
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