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Simple predator-prey swarming model
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This paper describes an individual-based model for simulating the swarming behavior of prey in the pres-
ence of predators. Predators and prey are represented as agents that interact through radial force laws. The prey
form swarms through attractive and repulsive forces. The predators interact with the prey through an anti-
Newtonian force, which is a nonconservative force that acts in the same direction for both agents. Several
options for forces between predators are explored. The resulting equations are solved numerically and the
dynamics are described in the context of the swarm’s ability to realistically avoid the predators. The goal is to
reproduce swarm behavior that has been observed in nature with the simplest possible model.
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I. INTRODUCTION

Animal aggregation is observed in a diverse range of or-
ganisms [1,2]. It includes fish schooling, bird flocking, mam-
mal herding, insect or bacterial swarming, and human
crowding. Even predators have been known to act together in
the form of hunting packs. There are shared similarities in all
of these cases, such as the fact that the organisms act in
unison and rapidly respond to obstacles. The universality of
such features suggests simple mechanisms for its emergence.
In this paper, swarming will refer to any such behavior in
which organisms come together and act in a reasonably co-
ordinated manner to produce an aggregate object.

Swarming has been studied extensively by computer
simulation [3-7]. Many models are individual based, where
swarm members are represented as agents that interact with
other agents as a function of their positions [8]. The use of
force laws has been a general approach. These forces consist
of a long-range attractive force that makes agents approach
and form the swarm, coupled with a short-range repulsive
force so that they do not collide with each other [9-11]. A
self-propulsive force that pushes each agent forward toward
some preferred velocity is often included [12-14]. Addition-
ally, a mechanism to align the agents with each other is
sometimes included, especially in application to flocking
[12,13,15,16].

These models have succeeded in reproducing some as-
pects of swarming observed in nature. The premise has been
extended to study similar problems such as pedestrian con-
trol [17]. Features such as evolution can be included to fa-
cilitate the search for optimal parameters [13]. Furthermore,
the possibility of implementing such algorithms into systems
of robots has been explored [18,19].

The model described in this paper has similarities with
those in the literature. However, it differs in a few regards.
First of all, there will be an emphasis on keeping the model
simple at the expense of making it an accurate predictor of
natural behavior. The intent is to reproduce swarming behav-
ior without including the features dependent on the traits of
the organism. The set of adjustable parameters is kept to a

*zhdankin@wisc.edu

1539-3755/2010/82(5)/056209(7)

056209-1

PACS number(s): 05.45.Pq, 89.75.—k, 45.50.Jf, 02.60.Cb

minimum to facilitate exploration of the dynamics. Second,
the model will be focused on the swarming of prey in the
presence of predators. Although predators have been imple-
mented into some models [13,15], it is less common than
studying single species. Since a primary purpose of swarm-
ing is for protection from predators, the predator is important
to include. Third, the model does not include alignment or
self-propulsion mechanisms, which are found in nearly all
other models. This is justified because of the presence of the
predators. The interaction with the predators is expected to
align the prey motions. If a predator is a distance away from
the swarm, the force will act similarly upon each agent in the
swarm and thus give uniform motion. This is confirmed in
the results. More interesting effects can also emerge as a
predator approaches the swarm. Thus, self-propulsion and
other alignment mechanisms are assumed to be less impor-
tant in this context.

II. MODEL

The system consists of two types of agents: predator and
prey. The environment is a two-dimensional infinite Carte-
sian plane that represents the surface of the earth. Three-
dimensional environments, such as the sky for birds or the
water for fish, usually contain the most stunning swarming
behavior but are not described in this paper since the dynam-
ics do not appear to differ significantly from the two-
dimensional model. There is assumed to be no interaction
between the agents and the environment except for uniform
friction. To facilitate computation, there are no more than a
dozen agents in our simulations. In addition, there are more
preys than predators to reflect the general situation in nature.

With the exception of friction, all forces are directed ra-
dially between agents and are power laws of the distance
between the agents. The prey pairs interact through long-
range attractive and short-range repulsive forces. The forces
between the predator pairs are not as obvious since there is
no general tactic that they follow in nature. Choosing the
same forces as between preys allows the predators also to
form swarms (i.e., hunting packs), which might be appropri-
ate for a species such as wolves. Another option is a repul-
sive force so that the predators spread around and trap the
swarm. The simplest option would be to have no force be-
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tween predators, which implies that the predators do not co-
ordinate with each other when attacking prey. All three pos-
sibilities will be considered. Lastly, there is an anti-
Newtonian force between predator-prey pairs [20]. This
force is equal in magnitude for both agents and acts in the
direction from predator to prey. The anti-Newtonian force is
nonconservative, which allows the system to stay in motion
indefinitely despite the loss of energy from friction.

The long-range force f and short-range force g acting on
agent i due to agent j are

f;j=ri§_1("j—ri), (1)

gijzrg_l(rj_ri)- (2)

The vector r denotes the position of the agent and r;; is the
distance between the agents. The force parameters are 7y for
the long-range force and « for the short-range force, with
a<1v. The short-range force is only used for repulsion. The
long-range force is used for the attraction between prey pairs,
the interaction between predator pairs, and the anti-
Newtonian force between unlike agents. A value of y=-1
tends to give the most realistic dynamics. With an inverse-
squared dependence (y=-2), the force falls off too fast so
that there is often an unnatural range of accelerations. With
v=0, the predator has no preference for close prey over far
away ones. A fractional value of +y is possible but is not
explored in this paper. The choice of « is less critical, so «
=-2 is used here. The resulting equation of motion for prey
is

mi= >, (fty—gzj)—Eﬁj—bofi- (3)

prey pred

The agent parameters are mass m and coefficient of fric-
tion b, with indices x for predators and o for prey. The mass
and coefficient of friction in the model roughly correspond to
the physical mass and mobility of the organism. Additional
coefficients may be introduced to weigh each contribution to
the force differently, but this is avoided in this paper for
simplicity. The first summation over j takes the indices of all
other prey (j # i). This summation accounts for the attractive
and repulsive forces that form the swarm. The second sum-
mation over j takes the indices of the predators and accounts
for the anti-Newtonian forces. The final term accounts for
friction, which is taken to be proportional to the velocity.

Three similar equations are considered for predators. The
first gives no interaction between predators,

mxfi=2.ﬁj_bxfi~ 4)

prey

The other two possibilities are either attraction or repul-
sion between predators. This corresponds to a plus or minus
sign in the following equation:

mii= >, (£fi—gj + Eﬁj—bxfi- (5)
pred prey

The short-range repulsion is not essential for the predators
when the long-range repulsive force is used.
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FIG. 1. (Color online) The equilibrium for eight agents in the
trivial case.

The initial conditions are not critical in most cases. In our
simulations, the preys are scattered randomly near the origin
and the predators are placed a short distance outside. This
corresponds to a situation where the predators approach an
initially unorganized swarm. Initial velocities are taken to be
ZEero.

III. RESULTS
A. Trivial case (no predator)

The trivial case has no predator in the system. The equa-
tions of motion simplify to the form

mofi=2(fij_gij)_b0fi' (6)
J#i

The result is that the preys form a stationary equilibrium
cluster with agents evenly dispersed, as shown in Fig. 1.
Animations corresponding to Fig. 1 and other figures can be
found online in Ref. [21]. The only situation in which the
swarm does not come to a stationary equilibrium in the
trivial case is when friction is removed, in which case energy
is conserved and no stable equilibrium exists. The trivial case
is not very interesting in itself, but it does show the type of
organization to expect when predators are far away in the
more complicated cases. Additional terms can be put into the
equation of motion to make the trivial case more interesting,
such as effects from an external field, self-propulsion for
each agent, or possibly noise. However, the emphasis is on
what happens once a predator is introduced, so there is no
need to make the trivial case more realistic and complicated.
Therefore, the trivial case is taken to be a rough approxima-
tion of a natural swarm with no predators around. A similar
model for trivial swarming has been studied in Ref. [22] in
more mathematical detail.

B. Single predator

The next case has one predator with the multiple preys. It
is observed that the general case no longer comes to a stable
equilibrium. However, there are equilibrium cases where the
predator travels into the center of the swarm and becomes
trapped. Friction eventually brings it to a stop. One such
equilibrium occurs when m,=0.5, b,=1, m,=0.1, and b,
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FIG. 2. (Color online) The positions of a predator trapped be-
tween seven preys in a stable equilibrium, along with the predator
trajectory during the transient phase. The parameters for this case
are m,=0.5, b,=1, m,=0.1, and b,=0.5.

=0.5 with seven preys. This is shown in Fig. 2 along with the
path of the predator during the transient phase.

Other cases result in a prey swarm similar to that of the
trivial case but perturbed by the predator. Although the equa-
tions do not include any alignment terms, the prey agents
will generally move in a coordinated manner away from the
predator. Once the predator gets near the swarm, the preys
become less organized.

One simple solution is a quasiperiodic attractor that forms
after a transient phase. As the predator approaches the
swarm, the swarm divides in order to avoid it. The predator
passes through and the pattern repeats but shifted by a small
angle. This attractor requires that the predator has more mass
and less friction than the prey. One such set of parameters is
m,=2.5, b,=1, m,=0.1, and b,=0.5 with seven preys. The
trajectories of the predator and prey are shown separately in
Fig. 3, along with the motion of the center of mass.

In addition, there exist chaotic solutions. These are of
more interest since they better match nature’s unpredictabil-
ity. One case has the predator weave a path through the prey
swarm. The predator remains relatively close to the swarm,
which deforms the swarm from the lattice pattern seen in the
trivial case. Parameters for this are m,=0.2, b,=0.1, m,
=0.3, and b,=0.5 with seven preys. The trajectories are
shown in Fig. 4. The largest Lyapunov exponent [23] is com-
puted to be A=0.75.

With minor adjustment of the parameters, the preys be-
come even less organized and the attractor becomes unstable
over long periods of time. Unlike the previous case, the
predator will sometimes chase prey away from the swarm for
brief moments. The predator trajectory is shown in Fig. 5 for
m,=0.2, b,=0.4, m,=0.1, and b,=0.5 with seven preys. The
loops that protrude from the dense swarm region are the
paths on which the predator follows prey out of the swarm.

In some cases, the predator will chase a prey away from
the swarm. This results in a two-body predator-prey system
that remains independent of the swarm. This can be inter-
preted as a successful capture for the predator. The lone prey
has lost the security of the swarm, so the predator should
have an easier time capturing it. Of course, this does not
happen in the simulation since the two agents are locked in
an interminable chase. Additional rules could be applied at
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FIG. 3. (Color online) The trajectories in a quasiperiodic solu-
tion with the parameters m,=2.5, b,=1, m,=0.1, and b,=0.5. The
predator trajectory is shown on the top, the corresponding trajecto-
ries of the seven preys are shown in the center, and the trajectory of
the center of mass for the system is shown on the bottom.

this point if a more realistic model is desired.

However, there is another natural way that a predator can
capture a prey. If a predator has more friction and less mass
than the prey, then it may be drawn in toward the prey while
the prey is unable to escape. This leads to the predator ap-
proaching a singularity. This case is not as interesting from a
dynamics perspective but has valuable connections to nature.
It corresponds to situations in which a predator is in much
better physical shape than the prey. The low mass means that
it undergoes high accelerations. The high friction means that
it has increased maneuverability and can change directions
rapidly. Thus, the parameters required for a predator to suc-
cessfully capture a prey can be characterized.

The effect of the parameters on the dynamics can be seen
from a bifurcation plot, where the largest Lyapunov exponent
is plotted as a function of the four agent parameters. Such a
bifurcation plot is shown in Fig. 6, where the four parameters
were individually varied from the chaotic case in Fig. 4.
Three distinct regions are visible. Periodic and quasiperiodic

056209-3



VLADIMIR ZHDANKIN AND J. C. SPROTT

-2

E;

X ol

FIG. 4. (Color online) The trajectories in a chaotic solution with
m,=0.2, b,=0.1, m,=0.3, and b,=0.5. The predator trajectory is
shown on the top, and the corresponding trajectories of the seven
preys are shown on the bottom.

cases with A=0 are obtained for small values of b, and m,
and large values of b, and m,. This represents cases where
the prey easily avoids the predator as it moves toward the
swarm. The greater friction acting on prey allows them to
change the direction of motion more rapidly than the preda-

FIG. 5. (Color online) The trajectories in a chaotic solution with
m,=0.2, b,=0.4, m,=0.1, and b,=0.5. The predator trajectory is
shown on the top, and the corresponding trajectories of the seven
preys are shown on the bottom. The predator occasionally pulls the
prey temporarily away from the swarm. This attractor is unstable
over long periods of time.
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FIG. 6. (Color online) A bifurcation plot showing the resulting
largest Lyapunov exponent, A, over a range of values for the four
parameters when varied from the case in Fig. 4. There is a region of
no chaos (A=0) for small b, and m, and large b, and m,. Then there
is a chaotic region for intermediate values where N\ varies smoothly
except for some windows of quasiperiodicity. Finally, there is a
sharp drop back to A=0 where the predator either chases one prey
from the swarm or captures it.

tors, while the lower mass allows them to change position
faster. At intermediate values, there is a region of robust
chaos with N continuously increasing from A=0 at the first
region. Within this chaotic region, there are a few windows
where A=0 for values of m, and m,. These windows corre-
spond to quasiperiodic solutions. Finally, there is a sharp
drop where N goes back to zero. In this region, the prey has
difficulty escaping the predator. This leads to the cases where
the predator chases one prey away from the swarm. After
long times, A=0 since the swarm and two-body predator-
prey system stop interacting because of drifting apart. Also
in this region are cases where the prey is unable to escape the
predator, resulting in a singularity that makes the computa-
tion of N difficult.

C. Multiple predators

The most complicated case has multiple predators with
multiple preys. This is also the most difficult situation to
model because the features of the predator become impor-
tant.

The simplest option is to have no force between the
predators, which corresponds to Eq. (4). This represents
predators that do not explicitly cooperate. The resulting dy-
namics are generally chaotic. The dynamics are similar to the
chaotic cases with one predator except that the swarm is even
more unorganized due to the extra predators. If forces be-
tween predators are added but are very weak, the outcome is
similar.

The next option is to have short-range repulsion and long-
range attraction between predators. This corresponds to Eq.
(5) with the plus sign. This allows the predators to form
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FIG. 7. (Color online) The trajectories for a quasiperiodic attrac-
tor formed by three predators and seven preys with m,=1, b,=0.1,
m,=0.5, and b,=0.5 with an attractive force between predators. The
prey swarm orbits inside of the circular predator swarm orbit.

swarms. Any combination of prey swarm and predator
swarm can exist. When the force between predators is not
quite strong enough to bind them together, the dynamics are
similar to the case of no force between predators.

A more interesting outcome is to have a prey swarm and a
predator swarm exist concurrently. In such a case, there is
initially a transient chaotic phase where the predators orbit
the swarm separately. This transient phase can exist for a
long period of time depending on initial conditions. After
some time, the predators approach each other and combine
into a swarm. The final result is a two-body problem: a
predator swarm in a circular orbit around a prey swarm. This
quasiperiodic attractor is shown in Fig. 7 for three predators
and seven preys with m,=1, b,=0.1, m,=0.5, and b,=0.5.

The final option is to have a repulsive force between the
predator agents, corresponding to the negative sign of Eq.
(5). This might correspond to predators that prefer to spread
around and herd the prey swarm. Herding is a complex be-
havior, but the basic features may be reproduced with this
model. Within a range of parameters, the predators orbit the
prey swarm while also avoiding each other. The prey swarm
undergoes very little net motion since the predators tend to
divide into all directions. Hence, the territory covered by the
prey is very small compared to that of the predators. The
trajectories for m,=1, b,=0.1, m,=0.5, and b,=1 are shown
for the three predators, seven preys in Fig. 8. The largest
Lyapunov exponent for this case is A=0.32.

With one or more predators, some of the chaotic attractors
break apart after long periods of time. This appears to be an
inherent rather than numerical effect. The conditions under
which this happens are not clear, but eventually the agents
arrange themselves so that the system splits into two or more
distinct clusters. This outcome is influenced by the param-
eters, and it appears that the cases listed here are stable.

D. Unrealistic results

Along with the dynamics already presented, there are
many other less realistic solutions. Some of these exhibit
notable features despite not being useful models of nature.
One especially unusual solution is shown in Fig. 9, where
v=0, a=-1, m,=0.2, b,=0.4, m,=0.2, and b,=0.2 for one
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FIG. 8. (Color online) The chaotic trajectories for a system of
three predators and seven preys with m, =1, b,=0.1, m,=0.5, and
b,=1 with a repulsive force between predators. The predator trajec-
tories are shown on top, and the corresponding prey trajectories on
bottom.

predator and five preys. This attractor forms after a transient
phase independent of initial conditions. All of the preys orbit
on a single path around the predator, while the predator itself
has a periodic orbit inside of the prey’s orbit. Over longer
periods of time, the orbit rotates and covers the area of a
circle. This case is just one example of the unexpected solu-
tions that can spring from the anti-Newtonian force.

IV. CONCLUSION

The model presented in this paper manages to reproduce
basic swarming behavior by using only friction and central

FIG. 9. (Color online) A peculiar solution with y=0, a=-1,
m,=0.2, b,=0.4, m,=0.2, and b,=0.2. The five preys orbit on an
outer trajectory and a single predator orbits inside. The entire orbit
slowly revolves, eventually filling a circular area.
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forces between agents. Most other swarming models include
additional complexity, usually in the form of directional
forces or self-propulsion for each agent. This was found to
be unessential for this model. This is largely due to the
predator interacting with prey through the anti-Newtonian
force, which has the tendency to cause the prey to move as a
group when the predator is at a distance from the swarm.
Additionally, the anti-Newtonian force keeps the system in
motion despite energy loss to friction.

One of the most evident results was the unified motion of
the swarms despite having each agent act autonomously.
This is known to be feature of real swarms. Emergent behav-
ior includes the temporary division of the swarm into two
fragments when a predator approaches. This motion would
confuse the predator since it must decide which fragment to
chase.

There are three main outcomes that may occur. The first
outcome is for the dynamics to be periodic or quasiperiodic.
These are probably the least realistic solutions because natu-
rally observed swarming near predators is complicated or
unpredictable. The second outcome is chaos. The presence of
chaotic solutions hints at the complexity that could arise in
real systems. It was observed that some of the chaotic solu-
tions are unstable over long times, which leads to the third
outcome. The third outcome is for the system to be un-
bounded or encounter a singularity. Unbounded cases corre-
spond to the predator chasing a prey away from the swarm.
In such cases, the predator would have favorable chances to
capture the prey in a more realistic model. Singularities oc-
cur when the predator approaches the prey faster than the
prey can escape. The resulting singularity causes problems in
the numerical simulation. This can be interpreted as the
predator directly capturing the prey.

To make the model more complete, additional terms or
degrees of freedom could be included in the equations. The
best way to construct the model would be to match it to
experimental data from nature. For example, rather than hav-
ing a single parameter gamma that determines the range de-
pendence for all three of the long-range forces, the dynamics
might better match observed behavior with three separate
parameters. Such changes would make it more difficult to
explore the entire parameter space but might result in much
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more realistic dynamics. Furthermore, noise may be added to
the equations. This may arise from mistakes made by the
organisms or the unpredictable effects of the system [24].
This may perturb some of the solutions and make them ap-
pear to be more realistic.

A more realistic model would also incorporate basic hunt-
ing and evasion tactics that may arise from instincts or ex-
perience. For example, if one prey finds itself disconnected
from the swarm, the predator should pursue it for an easy
meal. In this model, the predator usually goes toward the
swarm since there is a stronger force in that direction due to
the larger number of agents. This can be remedied in a few
different ways. One way would be to make the force propor-
tional to the distance of the prey from the center of mass.
Another option would be to include different sets of equa-
tions that depend on the situation at hand: the usual equa-
tions can be used when all preys are in the swarm, and then
a transition to a new set of equations with completely differ-
ent forces can take effect once a prey gets displaced. Any of
these options would add considerable complexity to the
model, so it would be important to be certain of one’s choice
before exploring the dynamics.

Although the model is physically simple, it can become
computationally inefficient with a larger number of agents.
This suggests that approximations should be considered
when studying larger systems. There could be ways to sim-
plify the current differential equation while still retaining the
essence of the dynamics. One idea that has worked well for
large systems is to model the swarm as a continuum [7].

There are two promising applications of swarming mod-
els. The first is to understand how swarms act in nature and
to explain the emergent patterns. The optimal parameters
may be uncovered and these may be linked to the biological
traits of the organism. It would be most appropriate for a
biologist to do such work. The second application is to apply
the algorithms to systems of robots. Although this option is
still in the rudimentary phase due to initial difficulties in
designing small robots, such possibilities are now being se-
riously considered [18,19]. By understanding swarms at a
fundamental level, the systems of robots can be engineered
to best fit their purpose without causing harm. Even so, it is
difficult to predict what will emerge with such technology.
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