Physics Letters A 375 (2011) 1445-1450

www.elsevier.com/locate/pla —_—

Contents lists available at ScienceDirect

Physics Letters A

P

Generalization of the simplest autonomous chaotic system

Buncha Munmuangsaen?, Banlue Srisuchinwong®*, J.C. Sprott P

2 Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum-Thani 12000, Thailand

b pepartment of Physics, University of Wisconsin, Madison, WI 53706, USA

ARTICLE INFO ABSTRACT

Article history:

Received 19 October 2010

Received in revised form 7 February 2011
Accepted 12 February 2011

Available online 16 February 2011
Communicated by C.R. Doering

Keywords:

Chaos

Autonomous

Jerk

2-D map

Lyapunov exponents
Differential equations

An extensive numerical search of jerk systems of the form X + X + x = f(%) revealed many cases with
chaotic solutions in addition to the one with f (%) = +x> that has long been known. Particularly simple is
the piecewise-linear case with f(X) =a(1 —x) for x > 1 and zero otherwise, which produces chaos even
in the limit of @ — oo. The dynamics in this limit can be calculated exactly, leading to a two-dimensional
map. Such a nonlinearity suggests an elegant electronic circuit implementation using a single diode.
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In 1887, King Oscar II of Sweden announced a prize for anyone
who could solve the n-body problem and hence demonstrate sta-
bility of the Solar System. The prize was awarded in 1889 to Jules
Henri Poincaré for submitting a long paper [1] showing that even
the three-body problem has no analytical solution. He also indi-
cated that minute differences in the initial conditions could result
in very different solutions after a long time. In the early 1960s,
a young meteorologist Edward Lorenz accidentally encountered
sensitive dependence on initial conditions while modeling atmo-
spheric convection on a primitive digital computer leading to the
discovery of the celebrated three first-order ordinary differential
Lorenz equations [2]. In 1976, Réssler [3] found a chaotic system
with a single quadratic nonlinearity that is algebraically simpler
than the Lorenz system. Many other even simpler chaotic systems
were discovered in 1994 by Sprott [4] through an extensive com-
puter search for chaotic systems with five terms and two quadratic
nonlinearities or six terms and a single quadratic nonlinearity. One
of these cases was conservative and previously known [5,6], but
the others were dissipative and apparently previously unknown. In
response to this work, Gottlieb [7] pointed out that the conserva-
tive case can be written in the explicit third-order scalar form

X =2 +R(x+ %) /% (1)

which he called a ‘jerk function’ since it involves a third deriva-
tive of x. Gottlieb also asked the provocative question, “What is
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the simplest jerk function that gives chaos?”. One response was
reported by Linz [8] who showed that the Lorenz and Rossler
systems can be written in jerk form but that the resulting equa-
tions are relatively complicated. However, he further showed that
Sprott’s case R [4] can be written as a polynomial with only five
terms and a single quadratic nonlinearity in its jerk representation,
ie. X +X — xXx+ax+b =0, which is more appealing than Eq. (1).

Meanwhile, Sprott also took up Gottlieb’s challenge and discov-
ered a particularly simple case

X+ax+x*+x=0 (2)

which has only three terms in its jerk representation or five terms
in its dynamical system representation with a single quadratic
nonlinearity and a single parameter a [9]. Subsequently, Zhang and
Heidel [10] rigorously proved that there can be no simpler sys-
tem with a quadratic nonlinearity. In addition, several examples
that have the same algebraic simplicity as Eq. (2) were reported
by Malasoma [11].

This raises the question of whether there are other simple
chaotic systems of the form

X+X+x=f(% (3)

where f(x) is the nonlinear function required for chaos. At least
one such a system with a piecewise-nonlinear f(X) has been pre-
viously reported [12]. To find chaotic solutions for each of the
specified nonlinear functions f (), the systematic numerical search
procedure developed in [4,9,13] was employed. In such a proce-
dure, the space of control parameters embedded in the nonlinear
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Table 1

Some functions f(x) that produce chaos in Eq. (3).
Case fx Lyapunov exponents Dimension
Gs1 +0.1exp(FX) 01021, 0, —1.1021 2.0926
GS2 +exp(Fx —2) 0.1009, 0, —1.1009 2.0917
GS3 +5.1cos(+x+ 0.1) 0.0467, 0, —1.0467 2.0446
GS4 +0.2 tan(Fx) 0.1015, 0, —1.1015 2.0921
GS5 +sgn(1 F 4%) 0.0530, 0, —1.0530 2.0503
GS6 +x2 —0.2%3 0.0489, 0, —1.0489 2.0466
GS7 +1/(x+ 2)? 0.0945, 0, —1.0945 2.0863
GS8 —5X% + |1+ 5%| 0.1168, 0, —1.1168 2.1046
GS9 +0.4/| £ %+ 1| 0.0670, 0, —1.0670 2.0628
GS10 +1/|+£x+ 1[0 0.0420, 0, —1.0420 2.0403
GS11 +4sin(£x+ 1) — 2.2x 0.0659, 0, —1.0659 2.0618
GS12 =+ cosh(x) — 0.6x 0.0668, 0, —1.0668 2.0626

function f(x) and initial conditions have been scanned to find
a positive Lyapunov exponent, which is a signature of chaos. By
this method, we have found many more such chaotic systems.
Some examples of the function f (%) that produce chaos with sim-
plified parameters are selected and listed in Table 1 along with
the numerically calculated Lyapunov exponents [14] in base-e and
Kaplan-Yorke dimensions [15]. The Lyapunov exponents were cal-
culated using the method detailed in [16]. The calculation was
performed using a fourth-order Runge-Kutta integrator with a step
size of 0.01. To enable high precision and to ensure that the chaos
is neither a numerical artifact nor a chaotic transient, the process
was repeated up to a time of 107 with extended 80-bit precision.
It was also verified that the result is not sensitive to iteration step
size or initial conditions and the solution is noticeably stable. The
sgn(x) term in case GS5 is approximated by tanh(200x) for the
purpose of estimating the Lyapunov exponent and confirming the
chaos since discontinuities in the flow are known to produce large
errors in the calculated Lyapunov exponent [17]. The result is not
sensitive to the factor of 200, and any large value would suffice.
Note that all cases in Table 1 have mirror image systems charac-
terized by the opposite sign of x and its derivatives but having the
same eigenvalues and Lyapunov exponents.

It is interesting to adjust parameters in f(x) for all cases in Ta-
ble 1 to maximize the Lyapunov exponent (this will also maximize
their Kaplan-Yorke dimensions since the sum of the Lyapunov ex-
ponents is always —1). We found that all cases have similar max-
imum values of their largest Lyapunov exponents of about 0.14
and corresponding Kaplan-Yorke dimensions of about Dgy = 2.12.
Consequently, an attempt to find an ‘optimal’ f (%) that maximizes
the Lyapunov exponent (and the corresponding Kaplan-Yorke di-
mension) by tuning the coefficients of a high-order polynomial for
f (%) was unsuccessful, with many nearly equivalent cases. A typ-
ical fourth-order polynomial with a large Lyapunov exponent is
f(x) = —0.107 — 0.059% — 1.665%% — 0.707%> — 0.153%*, and this
function resembles case GS1 in Table 1. Note that all cases have
the same constant rate of contraction of —1 (the coefficient of the
X term), which corresponds to the sum of Lyapunov exponents.
A search of conservative cases with the X term absent did not re-
veal any with chaotic solutions.

The linear stability of Eq. (3) can be studied from the eigenval-
ues of the Jacobian matrix

0 1 0
Jj=l 0o 0o 1 (4)
-1 F -1

where F’ is the partial derivative of X with respect to x evalu-
ated at the equilibrium point (x, X, X) = (f(0),0,0) by treating x
and X as constants. To evaluate the derivative of the signum (sgn)
case, we take |x| = xsgn(x), i.e., sgn(x) = |x|/x, and its derivative

becomes sgn(x)/x — |%|/%2. The characteristic equation of the Jaco-
bian matrix in Eq. (4) is

B2 — (F)r+1=0. (5)

At the equilibrium point, the system is a spiral node for F' < —1
and is a spiral saddle with index 2 for F/ > —1. At F' = —1,
the system undergoes a Hopf bifurcation where A = =+i. How-
ever, all cases given in Table 1 have one real eigenvalue and a
complex-conjugate pair of the form —a,b &+ ci with a, b and ¢
positive. Therefore, all cases in the table are spiral saddles with
index 2.

The attractors for the various cases in Table 1 are shown in
Fig. 1, all of which resemble the prototype Rdssler attractor in a
sense that they have a single folded-band structure except case
GS4 whose attractor looks like two back-to-back swirled Rossler
attractors. Initial conditions are not critical, i.e.,, no need to be
chosen carefully and most initial conditions that lie within basin
of attraction can produce chaos, and were taken as (0, 1, 0). Note
that Eq. (3) requires two parameters to completely characterize all
possible dynamical behaviors. These two parameters are needed to
explore and plot the entire parameter space without redundancy.
However, the two required parameters can usually be embedded
in the general family of functions f(X). In such a case, Eq. (3) can
produce chaos with no additional parameter without loss of gen-
erality. It is also possible that chaos can occur when one or even
both of these parameters happen to be unity, but that is just coin-
cidental.

The case of f (%) = —Aexp(x), which is case GS1 in Table 1 with
A = 0.1, is particularly interesting. It has the curious feature of
having chaotic solutions in the limit of A — 0 as is evident from its
largest Lyapunov exponent and bifurcation diagram (the local max-
ima of x) shown in Fig. 2, which shows a period-doubling route to
chaos. The attractor grows in size as A — 0 since a larger x is re-
quired to achieve the same nonlinearity as A decreases.

The system in Fig. 2 has a homoclinic orbit for A = 0.1307
where the unstable manifold of the equilibrium at (—0.1307, 0, 0)
intersects its stable manifold tangentially, resulting in an orbit as
shown in Fig. 3. The equilibrium point for this case has eigenval-
ues A = —1.5193, 0.2596 + 0.7686i, which satisfies the Shilnikov
condition [18] since the absolute value of the real eigenvalue is
greater than the absolute value of the real part of the complex
eigenvalues, providing a proof of chaos. For this value of A, the
largest Lyapunov exponent is near its maximum with a Lyapunov
exponent spectrum of (0.1016, 0, —1.1016) and a Kaplan-Yorke di-
mension of Dgy = 2.0922.

More interesting is to perform the linear transformation x —
x/A (so x — %/A, etc.). Then we have ¥ + ¥ + x = —AZexp(x/A).
This system in the limit of A — 0 can be approximated by the
piecewise-linear form f(x) = «a(1—x) for x > 1 and zero otherwise,
which produces chaos even in the limit of @« — oco. The attractor
size is independent of « in this limit, and the system is linear with
a reflecting boundary at % = 1. Its attractor for o = 108 is shown
in Fig. 4. At the reflecting boundary, its trajectory jumps immedi-
ately from positive X to negative X and has symmetry about x =0,
much like the velocity of a ball bouncing elastically from a hard
horizontal surface. A Poincaré section in the x-x plane depicted in
Fig. 5 shows the points at which the trajectory collides chaotically
with the reflecting boundary. Its eigenvalues satisfy 23 +12+1=0
and are given by A = —1.4655,0.2327 £ 0.7925i. It is apparent
that this system has F’ =0 (and thus F’ > —1), and it has eigen-
values of the same form, i.e., —a,b =% ci. Indeed, all cases in Ta-
ble 1 have these properties. The Lyapunov exponent spectrum for
this case is (0.1356, 0, —1.1356), giving an attractor dimension of
Dgy =2.1194.
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Fig. 1. Attractors of Eq. (3) for each of the nonlinear functions in Table 1.

A great virtue of the piecewise-linear approximation is that
the equation can be solved exactly in the two linear regions
with a matching condition at the boundary. Thus it is possi-
ble to calculate analytically the two-dimensional map that pro-
duced the Poincaré section in Fig. 5. The linear ODE that must
be solved to get the map of (x(0),X(0)) — (x(T),X(T)) is X +
X + x = 0. From the eigenvalues, the solution is of the form

x(t) = Aexp(—at) + exp(bt)[B sin wt + C cos wt] where a = 1.4655,
b =0.2327, and w = 0.7925. The values of A, B, and C can be
calculated from the specified initial conditions at the boundary.
One needs to find the smallest non-zero value of T for which
Xx(T) = 1, which is the next crossing of the Poincaré plane, by
solving for T numerically in the following transcendental equa-
tion:
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Fig. 3. Homoclinic orbit in Eq. (3) for f(x) = —Aexp(x) with A =0.1306.

—aAexp(—aT) + exp(bT)[(bB — wC) sinwT

+ (bc + wB) coswT] = 1. (6)
Once T is known, it can be substituted into the equations for x(t)
and Xx(t) to get x(T) and X(T). Repeat the process many times
to map out the whole Poincaré section. The resulting map looks
identical to the Poincaré section in Fig. 5 within round-off errors.
Unfortunately, one must solve for T numerically, which means
that this is not much of a simplification over solving the ODEs
directly, but it is a confirmation that the ODE solution is cor-
rect.

The Poincaré section in Fig. 5 appears nearly one-dimensional
and suggests that the attractor consists of six nested layers. The
fractal structure is not evident because the attractor dimension
is only slightly greater than 2.0. However, the fractal structure is
exhibited in the return map in Fig. 6, which shows each maxi-
mum value of x versus its previous maximum. What looks like two
closely spaced lines, upon magnification by a factor of 20, are seen
to be six lines. An enlargement by a factor of at least 4 x 103 re-
veals that each one of which is actually made up of yet more lines
in a self-similar fractal structure.

Note that this piecewise-linear function has characteristics re-
sembling a pn-junction diode. This fact suggests an elegant elec-
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Fig. 4. Attractor for the piecewise-linear system.
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Fig. 5. Poincaré section at X =0 for the piecewise-linear system.

tronic circuit implementation using a single diode as the nonlinear
element, e.g. a 1N4001 silicon pn-junction diode, and it has been
investigated and reported in [19].

In conclusion, several simple chaotic systems of the form X +
X+x = f(x) have been studied. They have similar maximum values
of their largest Lyapunov exponents and corresponding Kaplan-

Yorke dimensions. Furthermore, all cases have F’ > —1 with spiral
saddles of index 2. Particularly simple is the piecewise-linear case
with f(X) = o (1 —x) for X > 1 and zero otherwise, which produces
chaos even in the limit of @ — oo where the trajectory encoun-
ters a reflecting boundary at X = 1. This system can be calculated
exactly, leading to a two-dimensional map identical to the one
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Fig. 6. Return map for the maximum value of x for the piecewise-linear system.

obtained from a numerical solution of the differential equations,
and it suggests an elegant electronic circuit implementation using
a single diode as the nonlinear element.
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