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Abstract This paper analyzes the hyperchaotic be-
haviors of the newly presented simplified Lorenz sys-
tem by using a sinusoidal parameter variation and hy-
perchaos control of the forced system via feedback.
Through dynamic simulations which include phase
portraits, Lyapunov exponents, bifurcation diagrams,
and Poincaré sections, we find the sinusoidal forc-
ing not only suppresses chaotic behaviors, but also
generates hyperchaos. The forced system also ex-
hibits some typical bifurcations such as the pitch-
fork, period-doubling, and tangent bifurcations. Inter-
estingly, three-attractor coexisting phenomenon hap-
pens at some specific parameter values. Furthermore, a
feedback controller is designed for stabilizing the hy-
perchaos to periodic orbits, which is useful for engi-
neering applications.
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1 Introduction

A hyperchaotic system is characterized as a chaotic
system with at least two positive Lyapunov exponents,
indicating that its dynamics are expand in more than
one direction and give rise to a more complex attractor.
Historically, the two most well-known hyperchaotic
systems are the hyperchaos Rössler [1] and hyper-
chaos Chua’s circuit [2]. Due to the great potential in
technological application, the hyperchaos generation
has become a focal research topic [3–8]. Very recently,
hyperchaos has been generated numerically and exper-
imentally by adding a controller [9–13] in the general-
ized Lorenz system [14], Chen system [15], Lü system
[16] or a unified chaotic system [17].

Since Ott et al. [18] introduced the OGY control
method, researchers have increasingly interested in
controlling chaos of the nonlinear systems. Chaos con-
trol, in a broader sense, is now understood for two
different purposes: one is to suppress the chaotic dy-
namical behaviors when chaos effect is undesirable in
practice, and the other is to generate or enhance chaos
when it is useful under some circumstances, for exam-
ple, in heartbeat regulation [19], encryption [20], dig-
ital communications [21], etc. The process of generat-
ing or enhancing chaos is called chaotification or anti-
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control of chaos. At present, generating and control-
ling hyperchaos are usually achieved by state feedback
methods [22–24] or parameter perturbations [25–28],
which are identified as non-feedback control. How-
ever, parameter perturbation can be more easily real-
ized in practical systems and it is also more robust to
noise, because it does not require determining the sys-
tem state variables and continuous tracking of the sys-
tem state.

In this paper, we focus on hyperchaos and hyper-
chaos control based on the newly presented simpli-
fied Lorenz system [29] with a sinusoidal parameter
forcing. Compared with previous references, dynam-
ics of the forced system are analyzed with both fre-
quency variation and amplitude variation, and the gen-
erated hyperchaos is not only demonstrated by Lya-
punov exponent spectrum and bifurcation diagrams,
but also verified by Poincaré sections. In addition, a
simple feedback controller is designed to stabilize the
nonautonomous hyperchaotic system to different pe-
riodic orbits. It is organized as follows: The mode of
sinusoidally forced simplified Lorenz system is pre-
sented in Sect. 2. In Sect. 3, the dynamical behav-
iors, including hyperchaotic behaviors, are analyzed
by calculating the Lyapunov exponents, bifurcation di-
agrams, and Poincaré sections. In Sect. 4, a feedback
controller is applied to the forced system, and some
periodic orbits are obtained from the controlled hyper-
chaotic simplified Lorenz system. Finally, we summa-
rize the results and indicate the future directions.

2 The sinusoidally forced simplified Lorenz
system

The simplified Lorenz system with a single adjustable
parameter c is described by
⎧
⎪⎨

⎪⎩

ẋ = 10(y − x)

ẏ = (24 − 4c)x − xz + cy

ż = xy − 8z/3

(1)

where x, y and z are state variables. When the pa-
rameter c ∈ (−1.59,7.75), the system is typically
chaotic. The system is ‘simplified’ in these senses that:
(1) There is only one parameter c; (2) for c = 0 or
c = 6, the term y or x is removed from the second
equation; (3) for c = −1, it is the conventional Lorenz
system with the standard parameters. This system can

be reformulated in the following canonical form [14,
30]:
⎡

⎣
ẋ

ẏ

ż

⎤

⎦ =
⎡

⎣
a11 a12 0
a21 a22 0
0 0 a33

⎤

⎦
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z

⎤

⎦

+ x

⎡
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0 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ (2)

According to the canonical-form criterion formulated
in Ref. [19], the sign of a12a21 distinguishes nonequiv-
alent topologies. For the simplified Lorenz system,
a12a21 > 0 when c < 6; a12a21 = 0 when c = 6; and
a12a21 < 0 when c > 6. So the system includes three
different topological structures and has abundant dy-
namic properties.

Consider a simple sinusoidal control function c =
c0 sin(ωt), then c ∈ [−c0, c0]. Noticing that the func-
tion c = c0 sin(ωt) is a time-varying forcing term, the
three-dimensional autonomous system (1) is changed
to a three-dimensional nonautonomous system, which
is equivalent to a four-dimensional autonomous sys-
tem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = 10(y − x)

ẏ = (24 − 4c0 sin(u))x − xz + c0 sin(u)y

ż = xy − 8z/3

u̇ = ω

(3)

where c0 is the amplitude and ω is the angular fre-
quency of the forcing function. Since the forced sys-
tem is a four-dimensional autonomous system, limit
cycles, tori, chaotic or hyperchaotic attractors may ap-
pear. The attractor of system (1) with c = 1 and the
attractor of system (3) with c0 = 1, ω = 4.5 are shown
in Fig. 1. The structure of the sinusoidally forced sys-
tem (3) is apparently more complex than that of the
original system (1).

3 Hyperchaotic behaviors of the sinusoidally
forced system

3.1 Dynamics of the forced system with frequency
variation

When the perturbation amplitude c0 is a constant,
the dynamics are only dependent on the forcing fre-
quency ω. As is well known, the Lyapunov expo-
nents measure the exponential rates of divergence and
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Fig. 1 Attractors of system (1) and system (3) with different parameter. (a) System (1) with c = 1. (b) System (3) with c0 = 1,ω = 4.5

Fig. 2 Lyapunov exponents and bifurcation diagram of system (3) with c0 = 1. (a) Lyapunov exponents versus ω. (b) Bifurcation
diagram

convergence of nearby trajectories in state space, and
the bifurcation diagram is another important indica-
tor for different dynamical states. When c0 = 1, the
Lyapunov exponents versus ω and the correspond-
ing bifurcation diagram of the local maximum of x

are shown in Fig. 2, where the frequency variation
ω ∈ [0,20] with an increment of �ω = 0.01.

From Fig. 2, it is shown that system (3) is chaotic
in most of the range ω ∈ [0,20] with at least three
windows of periodicity when ω ∈ (7.8,10), and the
system (3) is chaotic even when ω exceeds 20. The

observed dynamical states over the range ω ∈ [0,20]
are listed in Table 1, which are determined by the sign
of the four Lyapunov exponents and the fractal di-
mension. So this sinusoidal forcing not only can sup-
press the original chaotic behavior to periodic orbits in
ω ∈ (7.80,8.10]∪(8.30,8.50]∪(8.85,10.00], but also
can generate hyperchaos in the range of ω ∈ (0,5.85].
The results are consistent with those in Ref. [25],
where it was found that the optimum frequency for
suppressing chaos with the smallest amplitude forc-
ing in the Lorenz system is twice the frequency of the
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Table 1 The dynamics of
system (3) for the different
ranges of ω with c0 = 1

Range of ω Sign of
the LE

Dimension Dynamics

(7.80,8.10] ∪ (8.30,8.50] ∪ (8.85,10.00] 0 − − − 1 periodic orbits

(5.85,7.80] ∪ (8.10,8.30] ∪ (8.50,8.85]
∪ (10.00,20.00]

+ 0 − − >2 chaotic attractor

(0,5.85] + + 0 − >3 hyperchaotic attractor

Fig. 3 Lyapunov exponent and bifurcation diagram of system (3) with c0 = 1. (a) Lyapunov exponents versus ω. (b) Bifurcation
diagram (blue and red correspond to two symmetrical initial conditions)

lowest unstable periodic orbit whose period is about
1.55 when c = 0, corresponding to a frequency of
ω ∼= 4π/1.55 ∼= 8.1 for the system (3) when c0 = 1.

To observe the periodic behaviors, the periodic
window is expanded with steps of 0.002 in Fig. 3.
Two sets of symmetrical initial conditions are selected
for visualizing the pitchfork bifurcation, and the corre-
sponding bifurcation diagram is drawn in blue and red
in Fig. 3(b). Obviously, four kinds of bifurcation exist
in the periodic window, including a period-doubling
bifurcation when ω ∼= 7.87, an interior crisis when
ω ∼= 9.05, a pitchfork bifurcation when ω ∼= 9.83, and
a tangent bifurcation when ω ∼= 10.

The hyperchaotic state of a system can often be re-
vealed in its Poincaré section. This method amounts
to taking a plane slice through the strange attractor
at a fixed value of the phase z, which reduces the
dimension of the attractor by 1.0, and it can pro-
vide much convincing evidence for hyperchaos. The
Poincaré sections generate in the hyperplane z = 24
(which passes through the equilibrium points) of sys-
tem (3) with c0 = 1, ω = 0 (which is chaotic) and with

c0 = 1, ω = 4.5 (which is hyperchaotic) are shown
in Fig. 4. Apparently the sinusoidally forced system
is hyperchaotic as evidenced by the two-dimensional
Poincaré section.

3.2 Dynamics of the forced system with amplitude
variation

Now we analyze the dynamical behaviors of the si-
nusoidally forced system with different forcing am-
plitudes. In this case, ω is fixed at 4.5 while the sys-
tem is hyperchaotic. The Lyapunov exponents versus
c0 and the corresponding bifurcation diagram of x are
shown in Fig. 5 where the range of amplitude varia-
tion is c0 ∈ [0,12] and the step size of c0 is 0.005. To
observe the periodic behaviors, the periodic window
is expanded with steps of 0.002 in Fig. 6. Figures 5
and 6 show that system (3) is chaotic in most of the
range c0 ∈ [0,12].

The different dynamical states over the range c0 ∈
[0,12] are listed in Table 2. We find the amplitude
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Fig. 4 Poincaré sections of system (3) for different ω. (a) c0 = 1, ω = 0 (chaotic). (b) c0 = 1, ω = 4.5 (hyperchaotic)

Fig. 5 Lyapunov exponents and bifurcation diagram of system (3) with ω = 4.5. (a) Lyapunov exponents versus c0. (b) Bifurcation
diagram (blue and red correspond to two symmetrical initial conditions)

Fig. 6 Lyapunov exponent and bifurcation diagram of system (3) with ω = 4.5. (a) Lyapunov exponents versus c0 ∈ [8.88,12].
(b) Bifurcation diagram (blue and red correspond to two symmetrical initial conditions)
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Table 2 The dynamics of
system (3) for the different
ranges of c0 with ω = 4.5

Range of c0 Sign of
the LE

Dimension Dynamics

[2.76,5.00) ∪ [7.47,7.65) ∪ [8.30,8.61)

∪ [8.88,9.17) ∪ [9.26,9.41) ∪ [10.47,10.94)

∪ [11.24,12.00)

0 − − − 1 periodic orbits

[0,0.53) ∪ [1.30,2.76) ∪ [5.00,7.47) ∪ [7.65,8.30)

∪ [8.61,8.88) ∪ [9.17,9.26) ∪ [9.41,10.47)

∪ [10.94,11.24)

+ 0 − − >2 chaotic attractor

[0.53,1.30) + + 0 − >3 hyperchaotic
attractor

Fig. 7 Poincaré sections of system (3) for the different c0. (a) c0 = 0, ω = 4.5 (chaotic). (b) c0 = 1.2, ω = 4.5 (hyperchaotic)

variation not only can suppress the original hyper-
chaotic behavior to chaotic behavior, or to a periodic
orbit, but also can preserve the hyperchaos in the range
of c0 ∈ [0.53,1.30).

The Poincaré sections are shown in Fig. 7 for
demonstrating the existence of hyperchaos in the
forced system. These sections generate in the hyper-
plane z = 24 of system (3) with c0 = 0, ω = 4.5
(which is chaotic) and with c0 = 1.2,ω = 4.5 (which
is hyperchaotic). Obviously the sinusoidally forced
system is hyperchaotic on the evidence of its two-
dimensional Poincaré section.

Interestingly, the three-attractor coexisting phe-
nomenon occurs in this forced system. There exist
three attractors when c0 = 8.6,ω = 4.5 and c0 = 10.6,
ω = 4.5, respectively. The coexisting attractors are
shown in Fig. 8, denoted in green, blue and red cor-
responding to different initial conditions. The initial

conditions of this first case are chosen as [x0, y0, z0,

u0] = [−15.0794,−4.1277,60.8300,2.8345], [x0, y0,

z0, u0] = [−1.1578,−0.5678,18.7900,5.2480] and
[x0, y0, z0, u0] = [6.5245,7.4527,39.1987,3.8621],
respectively. The initial conditions of the second case
are set to [x0, y0, z0, u0] = [5.0546,5.5616,40.7255,

4.0424], [x0, y0, z0, u0] = [−22.3068,−35.0684,

49.7511,2.5573] and [x0, y0, z0, u0] = [0.7080,

0.8707,6.0358,1.2553], respectively.

4 Hyperchaos control for the sinusoidally forced
system

Since chaos (or hyperchaos) may cause irregular be-
haviors which is undesirable, in this section, a feed-
back controller is designed to stabilize the nonau-
tonomous hyperchaotic system to periodic orbits.



Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system 1389

Fig. 8 Coexisting attractors of system (3) for the different c0. (a) c0 = 8.6, ω = 4.5. (b) c0 = 10.6, ω = 4.5.

Fig. 9 Lyapunov exponents and bifurcation diagram of system (5) with ω = 4.5, c0 = 1. (a) Lyapunov exponents versus k ∈ [−6,9].
(b) Bifurcation diagram

Assume that the controlled hyperchaotic system is
given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = 10(y − x) + v1

ẏ = (24 − 4c0 sin(u))x − xz + c0 sin(u)y + v2

ż = xy − 8z/3 + v3

u̇ = ω + v4

(4)

where v1, v2, v3 and v4 are feedback control input. To
keep it simple, we set v1 = kx, v2 = v3 = v4 = 0, so
that the controlled hyperchaotic system becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = 10(y − x) + kx

ẏ = (24 − 4c0 sin(u))x − xz + c0 sin(u)y

ż = xy − 8z/3

u̇ = ω

(5)

where k is the feedback coefficient, and the system pa-
rameters are chosen as ω = 4.5 and c0 = 1 to ensure
that the original perturbed system is hyperchaotic.

For the hyperchaos control, one problem is how
to choose the feedback coefficient k. Firstly, find the
range of k by analyzing the equilibrium and stability
of system (5) at ω = 0. Secondly, calculate the Lya-
punov exponents and plot the bifurcation diagram of
system (5) in the nearby range. Then we can easily de-
termine the feedback coefficient k required to control
the hyperchaos to stable periodic orbits. The Lyapunov
exponents versus k and the corresponding bifurcation
diagram of system (5) are shown in Fig. 9 where the
range of feedback coefficient is k ∈ [−6,9] and the
step size of k is 0.005.
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Table 3 Control of hyperchaos to periodic orbits with differ-
ent k

k LEs Periodic
orbit

−6.00 0, −0.3061, −0.3100, −17.7439 1-T

−3.05 0, −0.0433, −0.0479, −15.6227 2-T

5.25 0, −0.0706, −0.0830, −7.2628 3-T

7.02 0, −0.1391, −0.3746, −5.1326 m-T

Table 3 lists the different k values and the corre-
sponding Lyapunov exponents for different periodic
orbits. The phase diagrams are shown in Fig. 10.
Evidently, hyperchaotic behavior is successfully con-
trolled to different periodic orbits.

5 Conclusions

This paper investigates a simple control method of us-
ing a sinusoidal parameter forcing to drive the sim-

Fig. 10 State space plots of system (5) with different feedback coefficients (a) k = −6.00, (b) k = −3.05, (c) k = 5.25, (d) k = 7.02
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plified Lorenz system to hyperchaos. It is found that
the sinusoidal forcing not only suppresses the original
chaotic behavior to a periodic orbit, but also generates
hyperchaos in some parameter ranges. The basic prop-
erties of the dynamics are analyzed by using the Lya-
punov exponents, bifurcation diagrams, and Poincaré
sections. With both the change of frequency variation
ω and amplitude variation c0, the sinusoidal forced
system exhibits limit cycles, pitchfork bifurcations,
period-doubling bifurcations, chaos, and hyperchaos.
It has more complex dynamical behaviors than that of
the original system. Furthermore, hyperchaotic states
also can be controlled to chaos or a periodic orbit by
a simple feedback control, which is desirable for engi-
neering applications. Future works on this topic could
include its circuit implementation, as well as a theo-
retical analysis of the counterpart fractional-order sys-
tem.
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30. Vaněček, A., Čelikovský, S.: Control Systems: From Lin-
ear Analysis to Synthesis of Chaos. Prentice-Hall, London
(1996)


	Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system
	Abstract
	Introduction
	The sinusoidally forced simplified Lorenz system
	Hyperchaotic behaviors of the sinusoidally forced system
	Dynamics of the forced system with frequency variation
	Dynamics of the forced system with amplitude variation

	Hyperchaos control for the sinusoidally forced system
	Conclusions
	Acknowledgements
	References


