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Abstract In this paper, a non-existence condition for homoclinic and heteroclinic orbits
in n-dimensional, continuous-time, and smooth systems is obtained. Based on this result,
and using an elementary example, it can be conjectured that there is a fourth kind of
chaos in polynomial ODE systems characterized by the non-existence of homoclinic and
heteroclinic orbits.
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1 Introduction

Chaos means that a system will produce very different long-term behaviors when the initial
conditions are perturbed only slightly. Chaos is used for some novel, time- or energy-critical
interdisciplinary application. Examples include high-performance circuits and devices, liquid
mixing, chemical reactions, biological systems, crisis management, secure information process-
ing, and critical decision-making in politics, economics, as well as military applications, etc.

Homoclinic and heteroclinic orbits arise in the study of bifurcations and chaos!!l, as well
as in their applications to mechanics, biomathematics, and chemistryl®>3]. In some cases, it is
necessary to determine the nature or type of chaotic behavior occurring in a dynamical system.
One of the commonly used analytic criteria for proving chaos in autonomous systems is the work
of Shilnikov!*®! and its subsequent embellishments and slight extension!®7). The resulting
chaos is called horseshoe type or Shilnikov chaos. By applying the undetermined coefficient
method, homoclinic and heteroclinic orbits are found in some quadratic three dimensional
autonomous systems® 4. These systems are said to have a Shilnikov type structure of chaos,
and it is conjectured in [15] that the two Shilnikov theorems can be used to classify chaos in 3D
polynomial ODE systems. For such systems, there only exist three kinds of chaos: homoclinic
chaos, heteroclinic chaos, and a combination of homoclinic and heteroclinic chaos.

In this paper, we propose new conditions for obtaining the non-existence of homoclinic and
heteroclinic orbits in an autonomous, n-dimensional, continuous-time, smooth system by means
of a new criteria of the inequality type. Based on this result, we conjecture that there is a fourth
kind of chaos in 3D polynomial ODE systems characterized by the non-existence of homoclinic
and heteroclinic orbits.

Let us consider the nth-order autonomous system
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where the vector field f = (fi, fo, -+, fu)T : R® — R” belongs to class C"(r > 1), and
xr = (21,79, --,1,)" is the state variable of the system, and ¢ € R is the time. Suppose that
f has at least one equilibrium point P.

Definition 1 The point P = (p1,p2, - - ,pn) is called a hyperbolic saddle focus for system
(1) if the eigenvalues of the Jacobian A = D f(x), evaluated at P, are v and a+1i3, where ary < 0
and (3 # 0.

Definition 2 A homoclinic orbit v(t) refers to a bounded trajectory of system (1) that is
doubly asymptotic to an equilibrium point P of the system, i.e., . lim ~(t) = . liril ~(t) = P.
e ) S 5

The next definition requires the existence of at least two equilibrium points P; and P.

Definition 3 A heteroclinic orbit §(t) is similarly defined except that there are two distinct
saddle foci Py and Py connected by the orbit, one corresponding to the forward asymptotic time,
and the other to the reverse asymptotic time limit, i.e., . lir_ri_l o(t) = Py and . lim ~(t) = Po.

s too ——00

The main motivation of the following theorem is to find sufficient conditions for the non-
existence of homoclinic and heteroclinic orbits in system (1).

2 Main results

Theorem 1  Suppose that there exists at least one integer j € {1,2,---,n} such that
the component f;(x) satisfies 3o < 0 : fj(x) > a,Vx € R™. Then system (1) cannot have
homoclinic and heteroclinic orbits.

Proof First, we note that the main assumption of Theorem 1 do not contradict to the
assumption that the system (1) has an equilibrium point. Hence, let P be an equilibrium point
of system (1), then if there exists a homoclinic orbit v(t) = (y1(¢),v2(t), -+, ()T, then
. lirgrl ~(t) = . lim () = P = (p1,p2, -+ ,pn). We have 2(t) = f;(z) > a,Vz € R", where
— 400 ——00
a < 0. This implies by a simple integration from ¢y to ¢ that

z;(t) = a(t —to) + z;(to), (2)

where ¢ is the initial time such that ¢ > ¢o, thus, using (2) one has v;(t) > a(t — to) + 7, (o),

and . lim ~;(t) = 400 # pj, that is, at least one component of ~(¢) is not bounded. Now,
—— )

let Py, P, be saddle foci equilibrium points of system (1), then from inequality (2) one has
. lim §;(t) = +oo0 # p;, thus, at least one component of §(¢) is not bounded. Therefore, the

system (1) has no nomoclinic and heteroclinic orbits.
From Theorem 1, it is important to remark that if system (1) is chaotic, then its chaos is
not of the horseshoe type.

3 Example

In this section, we give an elementary example of a 3D polynomial ODE system characterized
by the existence of a chaotic attractor without homoclinic and heteroclinic orbits. Indeed,
consider the following system:

xl = a(y - l’),
y = —axr — byz, (3)
Z/ : _c_‘_yQ7

where a, b, and c are positive bifurcation parameters.
The system (3) is chosen as an example satisfying the conditions of Theorem 1, and it
is unknown if this system is equivalent to one of the 3D quadratic continuous-time systems
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with two equilibria, such as the Rossler system. The system (3) does not have a homoclinic
orbit on the attractor according to Theorem 1. This result is confirmed numerically by an
independent variation of a, b, and ¢ (one at a time). The calculations were performed using a
fourth-order Runge-Kutta algorithm with adaptive step size. Then, to determine the long-time
behavior, we numerically computed the largest Lyapunov exponent as the usual test for chaos.
For a = 40, b = 33, and ¢ = 10, the system (3) has the chaotic attractor shown in Fig.1, and
the Lyapunov exponents for these values are (2.6721, 0, —15.7588). This shows the chaoticity
of the attractor. From this elementary example, we conjecture that there is a fourth kind of
chaos in 3D polynomial ODE systems characterized by the non-existence of homoclinic and
heteroclinic orbits. Additionally, we note that there are values of the parameters where the
system (3) exhibits multistability, for example (a, b, ¢) = (40, 25, 10).
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Fig. 1 Projection onto zz-plane of chaotic attractor obtained from system (3) for a = 40, b = 33,
and ¢ =10

4 Conclusions

This work presents a simple criterion for the non-existence of homoclinic and heteroclinic
orbits in continuous-time dynamical systems in any dimension. It is conjectured that there is
a fourth kind of chaos in 3D polynomial ODE systems characterized by the non-existence of
homoclinic and heteroclinic orbits as shown by the elementary example in this paper.
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