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Chaos in Easter Island Ecology 
 
J. C. Sprott1, Department of Physics, University of Wisconsin - Madison 
 
Abstract: This paper demonstrates that a recently proposed dynamical model 
for the ecology of Easter Island admits periodic and chaotic attractors, not 
previously reported. Such behavior may more realistically depict the population 
dynamics of general ecosystems and illustrates the power of simple models to 
produce the kind of complex behavior that is ubiquitous in such systems. 
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INTRODUCTION 

The Easter Island, called “Rapa Nui” by its natives, has an area of 
about 170 km2 and is located about 27 degrees south of the Equator in the Paci-
fic Ocean and over 2000 km east of its nearest inhabited neighbor of Pitcairn Is-
land. Thus it is one of the most remote inhabited spots in the World and an ideal 
location for studying an isolated and relatively simple ecology. Humans arrived 
on Easter Island sometime between 400 and 1200 AD, presumably from the 
Polynesian islands to the west despite Thor Heyerdahl’s Kon-Tiki expedition in 
1947 demonstrating that South Americans could have sailed the 3500 km from 
the east (Heyerdahl, 1950). The human population may have reached about 
10,000 by the year 1680 but declined to a mere 110 in the year 1877 (Cohen, 
1995), and it now stands at about 5000. The discovery of the island by Euro-
peans in 1722 led to the spread of disease, slave trade, and eventually to a thriv-
ing tourist industry. 

Pollen records (Dransfield, Flenley, Harkness, & Rapu, 1984) show 
that the island was once forested with large but slowly growing Jubaea palm 
trees that were used to construct and transport the hundreds of stone statues for 
which the island is famous as well as to make dwellings and fishing boats and to 
provide nesting sites for birds, which were also a source of food. The common 
assumption is that the inhabitants deforested the island, leading to starvation, 
war, possibly cannibalism, and a general decline of their once thriving civiliza-
tion. It has been cited as a prime example of the dangers of over-consumption on 
a global scale (Diamond, 2005; Flenley & Bahn, 2003). However, recent evi-
dence (Hunt, 2006, 2007) indicates that the demise of the trees might be partly a 
result of a large population of Pacific rats brought to the island by the early set-
tlers either as stowaways or as a source of food and who consumed most of the 
seeds produced by the trees. 
                                                 
1 Correspondence address: J.C. Sprott, Department of Physics, University of Wisconsin 
Madison, 1150 University Ave., Madison WI 53706-1390. E-mail: csprott@wisc.edu 
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The parameters suggested by the authors give η = 4.8 and γ = 2.5. A nu-
merical solution with initial conditions of P = 0.004 (corresponding to 40 peo-
ple) and T = 1 at t = 0 produces the transient shown in Fig. 1 and replicates a 
graph in the original paper. It shows a rise and fall approaching a steady-state 
value about 51% of its peak value with decaying oscillations about the equilibri-
um. The model has a plausible population growth, but the crash is rather too 
slow, and incomplete. 

BASENER-ROSS MODEL 

To counter the limitations of the Brander-Taylor Model, Basener and 
Ross (2005) proposed an alternate model in which the carrying capacity of the 
population is equal to the number of trees in units of the number required to sus-
tain one person and governed by a logistic growth equation with a harvesting 
term (−hP) proportional to the number of people as given by 

 
  
 
 
 
 

where the four parameters are chosen to fit population estimates from Easter Is-
land data as given by a = 0.0044, c = 0.001, h = 0.025, and K = 70,000 with time 
in units of years.  

As before, we can linearly rescale P → PcK/h, T → KT, and t → t/c to 
obtain an equivalent two-parameter model given by 

 
  
 
 
 
 

where γ = a/c is the growth rate of the population in the presence of unlimited 
resources (T → ∞) and η = h/c is the rate at which trees are harvested, both in 
units of the initial growth rate of the undisturbed forest. The coexisting equilibri-
um at (P, T) = (η−η2, 1−η) exists only if η < 1, and in its absence, the human 
population either days to zero asymptotically or crashes abruptly after a prolong-
ed period of slow growth.  

The parameters suggested by the authors give γ = 4.4 and η = 25. A nu-
merical solution with initial conditions of P = 0.018 (corresponding to about 50 
people) and T = 1 is shown in Fig. 2 and replicates a graph in the original paper. 
The crash is much more abrupt and takes the population of both people and trees 
to zero. The truth probably lies somewhere between the two models, the former 
being too gentle, and the latter being too drastic. 

Basener and Ross (2005) also point out the existence of periodic 
solutions for a rather different but limited range of parameters corresponding to 
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where T is in units of the number of trees required to support one human and R 
is in units of the number of rats that can be supported by one tree. The six 
parameters are typically taken as a = 0.03, c = 10, b = 1, f = 0.001, M = 12,000, 
and h = 0.25 with time in units of years. Note that the people and the rats do not 
interact directly but they compete for the trees, in the former case through 
harvesting (−hP) and in the latter case through a reduction in the growth rate of 
the forest (fR). 

As before, we can linearly rescale P → PbM/h, R → MR, T → MT, and 
t → t/b to obtain an equivalent four-parameter model given by 

 
  
 
 
 
 
 
 

where γP = a/b and γR = c/b are the growth rates of the people and rats, respec-
tively, in the presence of unlimited resources (T → ∞), and ηP = h/b and ηR = fM 
are the rates at which people and rats consume the trees and their seeds, re-
spectively. This system has four equilibria with only the one at R = P/ηP = T = 
(1− ηP)/(1+ ηP ηR) corresponding to coexistence of all four species, and it exists 
only if ηP < 1. 

The parameters suggested by the authors give γP = 0.03, γR = 10, ηP = 
0.25, and ηR = 12, but with considerable uncertainty. Not surprisingly, they find 
solutions resembling their two-component model since the models are identical 
in the limit of ηR = 0, as well as solutions that resemble those for the Brander-
Taylor Model for ηR = 7.2. They do not report periodic or chaotic attractors but 
only show attraction to one of the stable equilibria. The main new result reported 
here is the existence of such attractors in their three-component continuous-time 
model.  

The search for chaotic solutions involved numerical calculation of the 
largest Lyapunov exponent (Sprott, 2003), for thousands of combinations of the 
four parameters (γP, γR, ηP, ηR) in a Gaussian neighborhood of the origin with all 
parameters positive. The only concession to biological reality was to constrain γR 
to be greater than γP since rats reproduce faster than people in given abundant re-
sources. One such solution with (γP, γR, ηP, ηR) = (0.1, 0.3, 0.47, 0.7) and (P0, R0, 
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extinction might provide a means to recognize impending doom in time to 
change behavior and avert it. In the case of Easter Island, a decision to reduce 
the harvesting rate at any time before the last tree was felled might have allowed 
the island to recover to a stable coexistence. In a society with sufficient 
technology, other solutions might be preferable such as eradicating the rats. A 
feature of a chaotic system is that a small change in a parameter can drastically 
alter the future, just as does a small change in the initial conditions, and we can 
exploit this sensitivity to produce a more livable world.  
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