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Chaos in Easter Island Ecology
J. C. Sprott', Department of Physics, University of Wisconsin - Madison

Abstract: This paper demonstrates that a recently proposed dynamical model
Jfor the ecology of Easter Island admits periodic and chaotic attractors, not
previously reported. Such behavior may more realistically depict the population
dynamics of general ecosystems and illustrates the power of simple models to
produce the kind of complex behavior that is ubiquitous in such systems.
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INTRODUCTION

The Easter Island, called “Rapa Nui” by its natives, has an area of
about 170 km” and is located about 27 degrees south of the Equator in the Paci-
fic Ocean and over 2000 km east of its nearest inhabited neighbor of Pitcairn Is-
land. Thus it is one of the most remote inhabited spots in the World and an ideal
location for studying an isolated and relatively simple ecology. Humans arrived
on Easter Island sometime between 400 and 1200 AD, presumably from the
Polynesian islands to the west despite Thor Heyerdahl’s Kon-Tiki expedition in
1947 demonstrating that South Americans could have sailed the 3500 km from
the east (Heyerdahl, 1950). The human population may have reached about
10,000 by the year 1680 but declined to a mere 110 in the year 1877 (Cohen,
1995), and it now stands at about 5000. The discovery of the island by Euro-
peans in 1722 led to the spread of disease, slave trade, and eventually to a thriv-
ing tourist industry.

Pollen records (Dransfield, Flenley, Harkness, & Rapu, 1984) show
that the island was once forested with large but slowly growing Jubaea palm
trees that were used to construct and transport the hundreds of stone statues for
which the island is famous as well as to make dwellings and fishing boats and to
provide nesting sites for birds, which were also a source of food. The common
assumption is that the inhabitants deforested the island, leading to starvation,
war, possibly cannibalism, and a general decline of their once thriving civiliza-
tion. It has been cited as a prime example of the dangers of over-consumption on
a global scale (Diamond, 2005; Flenley & Bahn, 2003). However, recent evi-
dence (Hunt, 2006, 2007) indicates that the demise of the trees might be partly a
result of a large population of Pacific rats brought to the island by the early set-
tlers either as stowaways or as a source of food and who consumed most of the
seeds produced by the trees.
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BRANDER-TAYLOR MODEL

One of the earliest attempts to model the population dynamics of Easter
Island involved a two-component economic model (Brander & Taylor, 1998) in
which P is the labor productivity (people) and T is the resource stock (trees),
with a dynamic given by
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where the seven parameters are assumed constant with estimated values of d—b
=0.1,¢9=4, 0= 1073, £ =0.4,r=0.04, and K = 12,000 with time in units of de-
cades. This system is a conventional Lotka-Volterra (predator-prey) model in
which the people are the predators and the trees are the prey.

Without loss of generality, we can linearly rescale P — Pr/of, T — KT,
and ¢ — #/r to obtain an equivalent but simpler two-parameter model given by

dpP
0 (T -7)
dT

A _ra-r-p
7 ( )

where 7 = ¢afK/r can be thought of as the effort per person expended in
harvesting trees and y = (d—b)/r is the relative rate at which the human
population dies in the absence of resources (7" = 0). This system has three
equilibria given by (P, T) = (0, 0), (0, 1), and (1—y/5, y/n). The third (coexisting)
equilibrium exists only if # >y, and it is stable whenever it exists. Coexistence
requires a minimum harvesting effort, and that effort increases inversely with
the decreasing number of trees (y = y/T). With constant parameters, the model
cannot produce a rise and fall of the population to zero, but it can produce a rise
and fall to a much smaller stable value.
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Fig. 1. History of the people (P) and trees (T) predicted by the Brander-Taylor
Model. Time is in units of 250 years, and the human population peaks at a value
of about 10,100 people.
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The parameters suggested by the authors give # =4.8 and y = 2.5. A nu-
merical solution with initial conditions of P = 0.004 (corresponding to 40 peo-
ple) and 7 =1 at ¢t = 0 produces the transient shown in Fig. 1 and replicates a
graph in the original paper. It shows a rise and fall approaching a steady-state
value about 51% of its peak value with decaying oscillations about the equilibri-
um. The model has a plausible population growth, but the crash is rather too
slow, and incomplete.

BASENER-ROSS MODEL

To counter the limitations of the Brander-Taylor Model, Basener and
Ross (2005) proposed an alternate model in which the carrying capacity of the
population is equal to the number of trees in units of the number required to sus-
tain one person and governed by a logistic growth equation with a harvesting
term (—/P) proportional to the number of people as given by

ar = aP(l —PJ

dt T
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where the four parameters are chosen to fit population estimates from Easter Is-
land data as given by a = 0.0044, ¢ = 0.001, 2 = 0.025, and K = 70,000 with time
in units of years.

As before, we can linearly rescale P — PcK/h, T — KT, and t — t/c to
obtain an equivalent two-parameter model given by
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where y = a/c is the growth rate of the population in the presence of unlimited
resources (I — ) and n = h/c is the rate at which trees are harvested, both in
units of the initial growth rate of the undisturbed forest. The coexisting equilibri-
um at (P, T) = (5—n°, 1-n) exists only if # < 1, and in its absence, the human
population either days to zero asymptotically or crashes abruptly after a prolong-
ed period of slow growth.

The parameters suggested by the authors give y = 4.4 and n = 25. A nu-
merical solution with initial conditions of P = 0.018 (corresponding to about 50
people) and 7'= 1 is shown in Fig. 2 and replicates a graph in the original paper.
The crash is much more abrupt and takes the population of both people and trees
to zero. The truth probably lies somewhere between the two models, the former
being too gentle, and the latter being too drastic.

Basener and Ross (2005) also point out the existence of periodic
solutions for a rather different but limited range of parameters corresponding to
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0.5 <# <1 and y =25 — 1. One example of such a solution for # = 0.8 and y =
0.6 is shown in Fig. 3. However, this is a conservative system and structurally
unstable, with even the slightest change in parameters causing attraction to the
coexisting equilibrium or with growing oscillations leading to extinction of both
species. Thus it is not biologically realistic even if the rather extreme parameters
could be justified. In a subsequent article, Basener, Brooks, Radin, & Wiandt
(2008a) showed that attracting periodic and chaotic solutions exist for a discrete-
time version of their model, but the assumptions are questionable for a subtropi-

cal island with limited seasonality.
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Fig. 2. History of the people (P) and trees (T) predicted by the Basener-Ross
Model. Time is in units of millennia, and the population peaks at a value of about
9400 people.
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Fig. 3. A periodic solution predicted by the Basener-Ross Model. The unit of time

is about 7 years, and the human population oscillates between about 1300 and
30,000 people.

INVASIVE SPECIES MODEL

To include Hunt’s claim that rats were in part responsible for the defor-
estation, Basener, Brooks, Radin, and Wiandt (2008b) advanced a three-compo-
nent generalization of their model with people (P), rats (R), and trees (7) given
by
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where T is in units of the number of trees required to support one human and R
is in units of the number of rats that can be supported by one tree. The six
parameters are typically taken as a = 0.03, ¢ =10, b =1, f= 0.001, M = 12,000,
and / = 0.25 with time in units of years. Note that the people and the rats do not
interact directly but they compete for the trees, in the former case through
harvesting (—/P) and in the latter case through a reduction in the growth rate of
the forest (fR).

As before, we can linearly rescale P — PbM/h, R — MR, T — MT, and
t — /b to obtain an equivalent four-parameter model given by
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where yp = a/b and yz = ¢/b are the growth rates of the people and rats, respec-
tively, in the presence of unlimited resources (7 — o), and #p = h/b and 5z = fM
are the rates at which people and rats consume the trees and their seeds, re-
spectively. This system has four equilibria with only the one at R = P/yp =T =
(1= #np)/(1+ np nr) corresponding to coexistence of all four species, and it exists
only if #p < 1.

The parameters suggested by the authors give yp = 0.03, yz = 10, p =
0.25, and 7z = 12, but with considerable uncertainty. Not surprisingly, they find
solutions resembling their two-component model since the models are identical
in the limit of #z = 0, as well as solutions that resemble those for the Brander-
Taylor Model for 5z = 7.2. They do not report periodic or chaotic attractors but
only show attraction to one of the stable equilibria. The main new result reported
here is the existence of such attractors in their three-component continuous-time
model.

The search for chaotic solutions involved numerical calculation of the
largest Lyapunov exponent (Sprott, 2003), for thousands of combinations of the
four parameters (yp, &, #p, #r) in @ Gaussian neighborhood of the origin with all
parameters positive. The only concession to biological reality was to constrain yg
to be greater than yp since rats reproduce faster than people in given abundant re-
sources. One such solution with (yp, vz, 7p, 71z) = (0.1, 0.3, 0.47, 0.7) and (Py, Ry,
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Ty) = (0.01, 0.01, 1) is shown in Fig. 4. There is a dominant 80-year cycle, but
the behavior is not perfectly periodic, and it is not a transient. A calculation ex-
tending the time to 20 million years shows continued chaotic oscillations with
Lyapunov exponents of (0.0094, 0, —0.2650) and a Kaplan-Yorke dimension of
2.035. Thus the system is weakly chaotic with information lost on a time scale
of about 106 years.
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Fig. 4. A chaotic solution predicted by the Invasive Species Model. The unit of
time is years, and the human population averages about 7200 people.

Figure 5 shows a return map of the successive minima in the human
population. It is unimodal and essentially one-dimensional, although a zoom by
a factor of 1000 into a portion of it as shown in the insert reveals the fractal
structure expected for a chaotic attractor. What appears to be a single line at low
resolution is actually a pair of lines, which in turn presumably consist of pairs of
lines, and so forth ad infinitum. A 45-degree diagonal line on such a plot would
intersect the curve at the position of the unstable coexistent equilibrium and is
approximately the location shown in the zoom.
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Fig. 5. A return map showing the minimum human population versus the
previous minimum for the chaotic Invasive Species Model.
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Fig. 6. Largest Lyapunov exponent and minimum value of the human population
as a function of the tree-harvest rate for the Invasive Species Model shows a
period-doubling route to chaos followed by mass extinction.

It is interesting to consider the route to chaos by varying one of the
parameters, which for this purpose is taken as #p, since the harvest rate is pre-
sumably the quantity over which the humans can exert the most control and thus
best provides a possible lesson in ecological stewardship. Figure 6 shows the
largest Lyapunov exponent and the local minima of P as a function of this pa-
rameter. It is evident that the chaos exists over a narrow range of the parameter
just before all species become extinct, and that the route to chaos is the common
period-doubling of a limit cycle. The limit cycle is born in a Hopf bifurcation at
about #7p = 0.4611. State space plots in the PT-plane for increasing values of #p
in Fig. 7 show how the dynamics evolve from attraction to the stable coexisting
equilibrium through a period-doubling route to chaos and finally to extinction of
all species.

Figure 8 shows the final values of each of the three variables over a lar-
ger range of 7p. Increasing the harvesting rate is good for the people up to a
point of diminishing returns well before the onset of the Hopf bifurcation and
stable oscillations. It is tempting to conclude from this figure that the extinction
is rather sudden, but the horizontal axis is the harvesting rate, not time, and the
vertical axis is the range of possible populations. To the extent that the harvest-
ing rate is under human control, one has at least the order of one human lifespan
to recognize the instability and reduce the harvesting rate.
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Fig. 7. State space plots for the Invasive Species Model at increasing values of
the harvesting rate showing successively attraction to the coexisting equilibrium,
a simple limit cycle, a period-doubled limit cycle, a chaotic attractor, transient
chaos, and rapid extinction.
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Fig. 8. Population of people (P), rats (R), and trees (T) permitted by the Invasive
Species Model as a function of tree harvesting rate, showing the narrow region of
periodic and chaotic oscillations preceding the crash.

CONCLUSION

It has been shown here that a simple three-component model of Easter
Island ecology admits periodic and chaotic attractors, not previously reported.
These solutions exist over a relatively narrow range of parameters, and thus one
might argue that they are of limited interest, especially since the dynamics of
Easter Island seemingly occurred in a single transient event. However, there are
reasons that this result is relevant. Simple models with fixed parameters are un-
realistic, and there might be feedback effects not included in the model that alter
the parameters to keep the system in a state of weak chaos (sometimes called
“the edge of chaos”). Certainly it is human nature to consume at an ever in-
creasing rate until the detrimental effects of that consumption can no longer be
ignored. Furthermore, the identification of the route to chaos and eventual
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extinction might provide a means to recognize impending doom in time to
change behavior and avert it. In the case of Easter Island, a decision to reduce
the harvesting rate at any time before the last tree was felled might have allowed
the island to recover to a stable coexistence. In a society with sufficient
technology, other solutions might be preferable such as eradicating the rats. A
feature of a chaotic system is that a small change in a parameter can drastically
alter the future, just as does a small change in the initial conditions, and we can
exploit this sensitivity to produce a more livable world.
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