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With the abundance of chaotic systems that have now been identified and studied, it is prudent
to establish a standard for the publication of new examples of such systems and to develop
acceptable criteria for their characterization.
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1. Background

By now, hundreds of examples of low-dimensional
discrete-time and continuous-time mathematical
models have been identified and studied in which the
solutions are chaotic, as evidenced, for example, by
a positive Lyapunov exponent [Sprott, 2010]. New
examples continue to be discovered and submitted
for publication in a plethora of nonlinear dynamics
journals including this one. These submissions range
in detail from simply showing what appears to be
an aperiodic orbit in state space to a thorough char-
acterization of the bifurcations and routes to chaos
over the entire parameter space with calculation
of the spectrum of Lyapunov exponents and other
dynamical and topological quantities. Rarely are
these papers manifestly wrong, but they often pro-
vide little more than just another example of behav-
ior that is well known and thoroughly understood.

2. Proposed Standard

To be considered for publication in a reputable jour-
nal, such papers ought to satisfy at least one of the
following criteria:

(1) The system should credibly model some impor-
tant unsolved problem in nature and shed
insight on that problem.

(2) The system should exhibit some behavior
previously unobserved.

(3) The system should be simpler than all
other known examples exhibiting the observed
behavior.

These criteria represent a necessary but not suf-
ficient condition for publication. The celebrated
Lorenz [1963] system satisfied all three criteria
when first published since it dealt with atmospheric
turbulence, exhibited sensitive dependence on ini-
tial conditions, and was the simplest system in
its time known to have these properties. Lorenz
[1993] devoted considerable effort to simplifying the
system from the original seven-dimensional system
with 13 quadratic nonlinearities that was suggested
by Saltzman [1962].

3. Simplification

Simplicity is not a well-defined mathematical con-
cept, but without doubt, the Lorenz system

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = xy − bz

(1)

with three variables, seven terms, and two quadratic
nonlinearities is a simplification of the Saltzman
system. It also has three parameters (r, σ, and
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b) that Lorenz chose to correspond to physically
meaningful quantities. The fact that there are
exactly three parameters is no accident. By a linear
rescaling of x, y, z, and t, four of the coefficients of
the seven terms can be set to 1.0 without loss of
generality. Three is thus the minimum number
of parameters required to completely characterize
the system and the maximum number that avoids
redundancy. Absent a compelling reason, newly
published systems should include sufficient but not
extraneous parameters. When the parameter values
are not of order unity (such as 10 or 28), that
is a clue that rescaling is likely to produce a
simplification.

The choice of where to put the parameters is
largely a matter of taste, but some choices permit
further simplification. For example, if Lorenz had
chosen the coefficient of the y term in the ẏ equa-
tion as one of the parameters, he might have noticed
that chaos persists even when that parameter is set
to zero as reported by Zhou et al. [2008] or that the
rx term is unnecessary if the sign of the parame-
ter is reversed as reported by Lü et al. [2002] and
further discussed by Sun and Sprott [2009]. An opti-
mal simplification of the coefficients, allowing either
sign, leads to the reduced chaotic system

ẋ = x − y

ẏ = xz − 2y

ż = xy − z,

(2)

which is completely specified by only two parame-
ters, one of which has a value of 2, and the other
has a value of 1 and can be chosen in five different
ways.

However, one can do even better, as shown
by van der Schrier and Maas [2000] and further
by Munmuangsaen and Srisuchinwong [2009]. By
rescaling the variables (x, y, z) → (σx, σy, σz + r)
and t → t/σ and taking the limit r, σ → ∞ but in
such a way that R = br/σ2 remains finite, Eq. (1)
can be reduced to the single-parameter system

ẋ = y − x
ẏ = −xz
ż = xy − R,

(3)

in which chaos occurs even for R = 1.
None of this is meant as a criticism of Lorenz,

who would have embraced these simplifications, but
it illustrates that advances in computers over the
past 50 years now permit us to simplify our systems
before rushing to publication.

4. Bifurcations

Given that every system has a unique number of
parameters that completely characterize it with-
out redundancy, a comprehensive study of a system
requires that the entire parameter space be explored
to identify all types of dynamic behaviors and the
bifurcation boundaries that separate them. When
there are more than two parameters, the current
state of the art makes this impractical, and even if
it could be done, there is a visualization problem
when using the printed page. Perhaps the best one
can do is to examine one or more one-dimensional
trajectories through the parameter space or a two-
dimensional slice through the space. With two
parameters, one should attempt a complete char-
acterization, even if only at low resolution in which
some features are inevitably missed.

5. Initial Conditions

A complication of making bifurcation diagrams is
that the initial conditions must be within the basin
of attraction or chaotic sea and there may be multi-
ple attractors. Thus the bifurcation diagrams may
look very different depending on how the initial con-
ditions are chosen, and this information is often
missing in publications, making it difficult to inter-
pret and reproduce the results. A simple way to
remain within the basin of attraction as a param-
eter is varied is to use the values of the variables
at the previous value of the parameter as the initial
condition for each new and slightly altered param-
eter value. In such a case, multiple attractors can
often be detected by varying the parameter in the
opposite direction, with the coexisting attractors
showing up through hysteresis in the vicinity of a
bifurcation boundary. Such a method also helps to
identify errors due to intermittency and long tran-
sients. Better yet is to use many different initial
conditions for each parameter value and calculate
the spectrum of some quantity that is likely to be
different for different coexisting attractors such as
their size or Lyapunov exponent.

Papers describing new chaotic systems should
include evidence for or against coexisting attrac-
tors. Numerous papers in the literature have falsely
claimed the absence of chaos in a system based on
the existence of a stable equilibrium. As Strogatz
[1994] points out, even the Lorenz system in Eq. (1)
has a strange attractor coexisting with a stable
equilibrium for 24.06 < r < 24.74 with σ = 10
and b = 8/3.
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6. Optimization

There was a time when it sufficed to select an
arbitrary value of the parameters which gives rise
to chaos, but modern computers now allow us to
find those values that optimize the chaoticity. An
obvious choice is to maximize the largest Lyapunov
exponent, but this choice is poor for a continuous-
time system since the Lyapunov exponent can be
made as large as desired through a linear rescaling
of time that otherwise has no effect on the dynam-
ics. Such an optimization requires a constraint and
depends on the parametrization and thus fails to
give a unique result. Better yet is a dimension-
less parameter such as the Kaplan–Yorke dimen-
sion [Kaplan & Yorke, 1979] whose value bears an
obvious and important relation to the dimension
of the state space. For example, the Lorenz sys-
tem in Eq. (1) with (σ, r, b) = (10, 28, 8/3) has a
Kaplan–Yorke dimension of 2.062, whereas the opti-
mized form in Eq. (3) has a dimension of 2.235 at
R = 3.4693 [Sprott, 2007]. If the goal of a paper
is to show that a system exhibits chaos, why not
take the additional step of finding out how chaotic
it can be?

7. Uncertainty

Most papers reporting new chaotic systems are
based on numerical experiments. It has long been
standard practice in science to include an estimate
of the uncertainty in experimental results, but we
have fallen out of the habit of doing this. The chaos
literature is filled with estimates of Lyapunov expo-
nents and other related quantities with no indica-
tion of the uncertainty and often with many more
digits than are credible.

Uncertainties arise from systematic and statis-
tical errors. Systematic errors have many sources,
especially for continuous-time systems where dis-
cretization and round-off errors occur in the numer-
ical procedures used to calculate the orbit and
the Lyapunov exponent. These errors are best
estimated by benchmarking the results against
well-established values for similar model systems.

Statistical errors usually arise from using a
finite-time approximation of a quantity that is prop-
erly described by an infinite-time integral. The
proper way to estimate such errors is to perform
many realizations of the calculation for different
orbits on the attractor or in the chaotic sea and to
calculate the mean and standard deviation of these
values. Fortunately, for a chaotic system, only a tiny

change in initial condition is required to produce a
highly uncorrelated orbit because of the sensitive
dependence on initial conditions. Even doing the
calculation twice will usually suffice to determine
the approximate number of significant digits in a
result. If putting error bars on the results is too
onerous, let us at least quote only those digits that
are significant and have a firm basis for deciding.

8. Figures

Even inexpensive computers are now capable of
producing very accurate results and making high-
quality graphics. Yet many submissions include
Poincaré sections with dots that are too large, bifur-
cation diagrams in which the bifurcation parameter
is adjusted in overly coarse steps, initial transients
are not allowed to decay, and axes that are inade-
quately labeled or labeled with lettering that is too
small to read. Authors should develop or acquire
tools that produce good quality figures with appro-
priately sized dots, high resolution, legible letter-
ing, and anti-aliasing so that diagonal lines do
not appear jagged. Publication quality figures may
require many hours or days of computation, but
that is a small fraction of the total writing and
publication time. Since most articles are now down-
loaded as pdf files, there is no reason to avoid using
color, although one must consider how the figure
will look in the printed journal. As a final check, be
sure the paper includes all the information required
for the reader to replicate the calculations that pro-
duced the figures such as parameter values, initial
conditions, scale factors, step size, and the numeri-
cal method.

9. Conclusion

If nonlinear science is to enjoy a good reputation,
it is important that our publications meet a mini-
mum standard and that we strive for completeness
and accuracy. The suggestions here cover many of
the common faults with submitted manuscripts and
the reasons such papers often receive unfavorable
reviews. Let us work to improve the quality of our
research and publications for our common good.
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