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Abstract

In this paper, we discuss the concept of structural stability as a
criterion for robustness of invariant sets in 3-D quadratic mappings.
We give the exact form of the small perturbation for these maps. The
relevance of this result is that the most results in the literature do not
give any form for these perturbations.
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1 Introduction

The most general 3-D quadratic map is given by

¥ = ag+ a1x + agy + asz + ayx® + asy? + agz® + arry + agrz + agyz
f: Y = by + b1z + by + byz + byx® + bsy? + bez? + brxy + bgwz + boyz
2 =cy+ T+ oy + 3z + cw? + esy? 4 o2 + ey + Tz + coyz

(1)



where (a;, b;, ¢;)gcicq € R3Y are the bifurcation parameters. Maps of the form
(1) are part of the models of storage ring elements in the “thin lens” approx-
imation as shown in [21]. Several phenomena occur in some 3-D quadratic
maps of the form (1) such as hyperchaotic and wild-hyperbolic attractors as
shown in [3-5-7-8-9-10-11]. Many of these maps are useful in potential appli-
cations [4-6]. Some generalizations of the 2-D Hénon map were introduced in
[7-8-9-10-11], and the attractors obtained are very similar to the Lorenz and
Shimizu-Morioka attractors as shown in [1-2-3-7]. In particular, these special
cases are used in the study of homoclinic phenomena and the unfolding of
2-D maps to maps of higher dimension [8-9].

In this paper, we discuss the concept of structural stability as a criterion
for robustness of invariant sets of the general 3-D quadratic map. We define
and state important properties of this notion, along with its conditions. We
will give the exact form of the C" small perturbation (see the definition
below) for the general 3-D quadratic map (1). The relevance of this result
is that almost all results in the literature do not give any form for these
perturbations.

2 Structural stability of 3-D quadratic map-
pings

The concept of structural stability was introduced by Andronov and Pontrya-
gin in 1937, and it plays an important role in the theory of dynamical systems.
Conditions for structural stability of high-dimensional systems were formu-
lated in [23] as follows: A system must satisfy both Axiom A and the strong
transversality condition. From a mathematical point of view, let C"(R™ R")
denote the space of C" vector fields of R™ into R™. Let Dif f"(R™,R™) be the
subset of C"(R", R™) consisting of the C" diffeomorphisms: (a) Two elements
of C"(R",R"™) are C" e-close (k < r), or just C* close, if they, along with their
first k& derivatives, are within £ as measured in some norm. (b) A dynamical
system (vector field or map) is structurally stable if nearby systems have the
same qualitative dynamics.

The words nearby systems can be translated in terms of C* conjugate
for maps and C* equivalence for vector fields. Assume that the maps under
consideration act on compact, boundaryless, n-dimensional, differentiable
manifolds M, rather than all of R". This assumption induces the so-called C*



topology given in [24]: The C* topology is the topology induced on C" (M, M)
by the measure of distance between two elements of C”(M, M). Hence, the
notion of structural stability can be formally formulated as follows: Consider
amap f € Dif fr(M,M) (resp. a C" vector field in C"(M, M)). Then f is
structurally stable if there exists a neighborhood N of f in the C* topology
such that f is C° conjugate (resp. C° equivalent) to every map (resp. vector
field) in N. From this definition, it follows that structural stability implies
a common and typical or generic property of a dynamical system to a dense
set of dynamical systems in C"(M, M). We note that a property of a map
(resp. vector field) is said to be C* generic if the set of maps (resp. vector
fields) possessing that property contains a residual subset in the C* topology.

It was proved in [24] that the hyperbolic fixed points, periodic orbits,
and the transversal intersection of the stable and unstable manifolds of hy-
perbolic fixed points and periodic orbits are structurally stable and generic.
Also, structurally stable systems are generic. In terms of C* topology, the
structural stability can be reformulated as follows: A diffeomorphism f is
C" structurally stable if, for any C” small perturbation g of f, there is a
homeomorphism h of the phase space such that

hof('r’y7z):goh(m’y7z) (2)

for all points = in the phase space.

Generally, the determination of a C" small perturbation g of f is not an
easy task. Most results in the literature do not give any form of g. In this
paper, we will give the exact form of the C" small perturbation g for the gen-
eral 3-D quadratic map (1). Indeed, assume that the C” small perturbation
g of f is also a 3-D quadratic map of the form

1 =dy+ dix + doy + dsz + dyx? + dsy? + dg2? + dray + dgxz + dgyz
qg: Y =eg+erx+ ey +e3z+ e, + e5y2 +eg2? + erxTY + esrz + eqgyz
2= fot fre + foy + fsz + far® + fsy? + fo2? + frry + fsvz + f9?/<2>
3
where (d;, e;, fi)geico € R*® are small perturbations of (a;, b;, ¢;)geicy € R¥
to be determined if we assume that f and g are topologically conjugate. The
linear transformation h is defined by

hir hia his z
h(z,y,2) = | hai hos hos Yy (4)
hsi hsa  hs3 <



with the condition of invertibility given by

d = (haghsz — hashsz) hiy + (haihas — haihss) hig + (hoihsa — hoshar) has 7&(0)

5
The simplest assumption is that A is linear. Therefore, all the results related
to the existence of this transformation are part of the whole set of possible
existing transformations.

Note that if such a transformation h exists, then there is an equivalence
relation, and the set of all maps is divided into classes of topologically con-
jugate maps. This implies that f and g have identical topological properties.
In particular, they have the same number of fixed and periodic points of
the same stability types. If f and g are invertible, the order of the points
is preserved, and if the maps are non-invertible, the order of points is also
preserved, but A maps forward orbits of f onto the corresponding forward
orbits of g.

The direct application of (2) requires tedious and very complicated cal-
culations. To avoid this problem, we use some results from linear algebra.
Indeed, it is well known that any matrix over R is similar to an upper trian-
gular matrix J which is the Jordan normal form. Finding this form is related
to knowing of the minimal polynomial. For 3 x 3 matrices, we have 6 cases
of Jordan normal forms as shown in [22]:

( hiin 0 0 hiy 0 0
Jl = 0 h22 0 ,JQ = 0 hgg 0
0 0 h33 0 0 h22
hin 0 0 hipm 0 0
J3 = 0 h22 1 ,J4 = 0 ]’LH 0 (6)
0 0 ho 0 0 h;
hiir 1 0 hiy 1 0
J5 - 0 hll 0 ,JG - O hll 1
0 0 hy 0 0 h;

\

Here h;; # 0 due to condition (5). Assume that the matrix defining the
transformation h is one of the matrices (J;);;<4. Then the formula for h
is well defined, and we must look for the possible values of the parameters
(di, €3, fi)geico € R*® in terms of (a;, by, ¢;)geicq € R*® and (hy;), ;o4 defining
the matrices (J;),.,< - Indeed, for the first case (J;) we have



( _ _ h . _ hll
do = aphyy, dy = alh ,dy = CLQ, ds = agpt,dy = 3+, d5 = a5yt
_ _ as hi1
dg = aa h2 L dy = ds = 12 dg = 9h22h33
ep = bohaa, €1 = —h22; g = by, e3 = 0312 ey = U hyy,
h l
bs _ br __ bs h22 _ }79

e5_h22’€6_b6h2 76T = 1 68 T Ry has €9 T s
c: o ¢
fo = cohss, fi = h33,f2 = h_222h'337 fs=c3, fa= h—%h:’,s

J5s = hc—ih:s?,,ffs e J1= g hess s = 1 fo = s

For the second case (J2) we have

( h ash a
do = aphy1,dy = ay,dy = B dy = B dy =

\ b ha2 h22 ’}1111
_ ashyy _ aghn _ ar — aghiy
d5 - h%2 7d6 - h%g 7d7 hag? d8 h22 d9 h§2
bih bah
eo = bohag, €1 = F2 €2 = by, €3 = by, 04 = 75"
bs _ be __ by __ bs bo

e5:h22’€6_h2767_h11’68_h11769:h2'ﬁ
— _— C — — — C4Nn22
Jo —Coh22,f1——}L1527f2—027f3—03,f4— A

f:%h22 fo=g5fr=5-fs =15 fo= 75
For the third case (J3) we have

( _ _ __ azh _ az—ash __ ashi1
do = aghi1,d1 = a1,dy = Zzgladz = —hlledzx h11  ds = h3,
_ as—aghas+agh3 __ ay _ ar—aghoo _ 2a5—agh2s
dﬁ - hll h%g 227d7 - h_22’ d8 - h%g 7d9 - _hll hg2
_ __ c1tbihos __ Cotbohos __ cat(b2—c3)haz—b3h3,
€9 = Co + bohog, €1 = S22 ey = SRR ey = — 2,
eq = ca+bshoo ex — bshostcs en = (bs—co)haz+(c6—bo)h3,+bsh3scs
4 hi, 5 hyy 6= h3y
e, — Crtbrhas o _crt(br—cs)hoz—bsh3, e = _ 2e5+(2bs—co)haz—bgh3,
7 hithay ° 8 oh hi1h3, ! \ h3, .
— ca— 63 22 cahao
Jo=cohaz, f1 = G2, fa = o, f3 = = 25272 fy = e
__ 5 _ Cs— C9h22+cﬁh22 C7—Cgh22 _ _205—Cgh22
\ f5_h227f6_ f hll f8_ hi1ihas 7f9_ h%g .

For the fourth case (J;) we have

(7)

(9)



a a,
do = aphi1,dy = a1,dy = as,ds = Cl37d4 = 2 dy = =

a, a ha:/ll hll
— a6 — a7 — 4ag
d6 hi1? d7 hi1? dS h11 dg bh11 b
eg = bohi1,e1 = b1, e2 = by, e3 = by, e = P65 = 32 10
J S S be (10)
6 = T T BB T R 099 T h1

1
Jo=cohir, fi = a1, fa = 02,f3 =c3, fa = h11 s = h11
— G
L f6 - h11 f7 h11 f h

_87 fg = 2,
For the fifth case (J5) we have

11 hi11

( do = by + aghyy, dy = BEaL g, = _b1+(a1—bzghu—a2h§1
11
d3 _ bztashi d, = batashii d5 _ bat(asa— b7)h11+a5h%1+(b5 a7)hi,
hin RZ, hi
dg = bs+aghit d. = _ 2bs+(2a4— b7)h11*a7h11
h2 9 - h3
__bg+(as— b9)h11—a9h
de = b8+a8h11 do = 11
< S b
eg = bohi1,e1 = by, e0 = =252 ey = by, eq = -
_ ba—brhi1+bsh3; _ bg o 2b47b7h11 __ bg __ _ bg—boh1
€5 = hil‘xl , €6 = hi1’ €7 = h , €8 = hi1’ €9 = h%l
fo=cohir, fi = a1, fo = =952 f3—C3;f4— o
ca—crhii+esh? 2c c h cg—coh
f5: "3 117f:h f7_ o f8_ f9_ %
\ 11 1’ 11 11

For the sixth case (Js) we have

b h b1 —ash?,+(a1—b2)h
do = by + aphiy, dy = 2B dy = —=== 11,1%(11 2)ls
_ bi+(a1—b2)h11+(bz—a2)h?, +ash?,
ds = e,
dy = b4+(124h11 ds = b4+(a4*b7)h11+(f5*a7)h?1+a5h?1
hii )
ds = by+(ag—b7)h11+(bs— a7+b5)h%1+(gs+a5 b9)h?1+(b6 ag)ht, +aeh}, (12>
hiy
d7 o 2b4—a7h11+(2a4—b7)h11 dg o 2b4+(2a4—b7)h11—I—(bg—aﬂh%l-‘ragh";’l
et h? , — h4
dg _ 2b4—|—(2a4 2b7)h11+(b8 2a7+2b5)h 1+(2a5+a8 bg)hll—aghll
\ h%y




_ _ c1+bih _ cit(bi—c2)h11—bah?
eg = Co + bohur, er = S ep = — " =

Cl+(b1*Cz)hllZ(SCS*bz)h%ﬁthLfl ey = Gatbihn
o C4+(b4—137)h11+Z5h?1+(cz>—b7)h%1
s = C4+(b4—07)h11+(65—b7+68)h§1-&;l((lsbls-i-bs—Cg)h?1+(06—b9)h?1+b6h§1
_2c4+(2b4—;§)h11—b7h§1 e = 21é4+(2b4—C7)h11}—;(c8—b7)h%1+b8h?1
| - _204+(2b141_207)h11+(cs—2b7+§§5)h§1+(b8—CQ+12%5)h§1—bghill
11

€3 —

(13)

€7 =

and

_ _ ___c1—cohnn _ ca+czhi —cahn _

Jo=cohn, i = c, fa = =521 fs = E fa= gk

_ ca—crhiitesh?y _ C4—C7h11+(05+08)h%1—Cgh‘z’l-&-ceh}h _ 2c4—crhiy
f5_ h?l 7f6_ h% af7__ 2

. 204—c7h11+cgh%1 o 204—207h11+(205+cg)h%1—cghg’l

f8 - h% 7f9 - = hzlll .

hll

(14)
From the expressions of the parameters (d;, ;, fi)y<;<q € R*® in (7)—(14), we
conclude that there exists at least 23 forms of variations for these parameters
as follows:

4

u=qa,u=av+p
u=oa  u=a% u=2u=a%, yu= 22
w w v ws w
_ a+pv _ a+pv _ a+pv _ atpv _ a+pv
U = 2 7u - 2 7u - 7“ - 7u -
< w v ws wg v 5 (15>
o a+pv _ a+fv _ oaptasvtasy __ ajtasvtasy
U—S( V2 ,’LL—S V3 ,U— V3 ,U— V2
2 2 2 3
u = a1+a5}11)};ra2v LU= wa1+a2vli+a2v U= a0+a1v+022v “+aov 7]{ — 3’ 4
_ agtaivtasv®tasvdtazv? k= _ agtaivtasv?tasvdtazvttase®
| U= ok k=5,6,u= v6

Any variation in these curves of the parameters (d;,e;, fi)gc;cg € R
produce similar and equivalent dynamics of map (1). Thus the map (1) is
structurally stable when the variation is in the forms (15).

3 Example

In this section, we give an example to validate the above analysis. Indeed,
it was shown in [8] that any 3-D quadratic diffeomorphism with a quadratic
inverse and constant Jacobian can be written as



)
9(z,y,2) = z (16)
Co + 1T + ey + 3z + cay? + 522 + ceyz
where (¢;), ;<4 are the bifurcation parameters.
For the map (16), the different forms of maps equivalent to it are

r =1y
__ hoaz
g1 : hy hss , . (17>
! __ cihasx 2133y cqhssx cs 33y C(;z
: _COh33+ h1 - haa Tzt hi + h3, + h33
! hu
t , hoa Y
" e ) (18)
h h 2
Z = Cghgg + c1 22T Coy + c3z + C4 2206 + 05h§2y + 02222
22
! — hn h11
=¥~ hQQZ ,
"= o1 gy 2y _ (camesho)e 4 ean? | csy? | 2esye
93 - y=cot har + haa h3, - 3 t h§2( ’%22 ) 2
’r_ c1hooz (ca—cshag)z cahoox? sy cs+cehsy )z  2csyz
21 = cohag + FREE + oy — SIS+ SR 4 50 A o
(19)
=y
: /
g y ==z (20)
Z = cohi1 + a1z + ey + c3z 4 a4 Byt 4 el
=y
/
. — .
g5 . ((; cah )y y 2 (C4+C5h%1)y2 9 % oy
"= _ (a—cohn)y ca? | (atehi)y? o2 2
7= cohu + oz h11 + 3z + hi1 + hiy + hi1 hi,
1)
=y
c1—cah
g Y=ot (C—hy 4 gz + eqa® + esy® + €62% + €7y + €51z + egy2
11
r_ 9 ) )
2= fo+arx+ foy+ faz 4+ fix2 + fsy: + for2 + frxy + fsxz + foyz
(22)



where

( o 61702h11+03h%1+h?1 o C4+C5h%1
€3 = h?l , €4 = h2 ,65 = T
__ ca—crhii+teshd +eshly 2 24
€6 = h6 ,E7 = h3 ,68 = hzlll
QC4+205h c1—coh
eg = ——= 11 f() — Coh11,f2 % (23)
— Cl+03h11—02h11 _ C4+c
f3 N h3 ’ f h11 f5 o
fo = cateshiy +eshiy fr= 2 fo— fo = _ 2eat2eshd;
(7O hiy J7 h2 18 h3 »J9 T hi

4 Conclusion

In this paper, the concept of structural stability was discussed for the case of
3-D quadratic mappings. We give the exact form of the small perturbation
for these maps. The relevance of this result is that almost all results in the
literature do not give any form for these perturbations.
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