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Abstract

In this paper, we discuss the concept of structural stability as a
criterion for robustness of invariant sets in 3-D quadratic mappings.
We give the exact form of the small perturbation for these maps. The
relevance of this result is that the most results in the literature do not
give any form for these perturbations.
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1 Introduction

The most general 3-D quadratic map is given by

f :


x′ = a0 + a1x+ a2y + a3z + a4x

2 + a5y
2 + a6z

2 + a7xy + a8xz + a9yz
y′ = b0 + b1x+ b2y + b3z + b4x

2 + b5y
2 + b6z

2 + b7xy + b8xz + b9yz
z′ = c0 + c1x+ c2y + c3z + c4x

2 + c5y
2 + c6z

2 + c7xy + c8xz + c9yz
(1)
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where (ai, bi, ci)0≤i≤9 ∈ R30 are the bifurcation parameters. Maps of the form
(1) are part of the models of storage ring elements in the “thin lens” approx-
imation as shown in [21]. Several phenomena occur in some 3-D quadratic
maps of the form (1) such as hyperchaotic and wild-hyperbolic attractors as
shown in [3-5-7-8-9-10-11]. Many of these maps are useful in potential appli-
cations [4-6]. Some generalizations of the 2-D Hénon map were introduced in
[7-8-9-10-11], and the attractors obtained are very similar to the Lorenz and
Shimizu-Morioka attractors as shown in [1-2-3-7]. In particular, these special
cases are used in the study of homoclinic phenomena and the unfolding of
2-D maps to maps of higher dimension [8-9].

In this paper, we discuss the concept of structural stability as a criterion
for robustness of invariant sets of the general 3-D quadratic map. We define
and state important properties of this notion, along with its conditions. We
will give the exact form of the Cr small perturbation (see the definition
below) for the general 3-D quadratic map (1). The relevance of this result
is that almost all results in the literature do not give any form for these
perturbations.

2 Structural stability of 3-D quadratic map-

pings

The concept of structural stability was introduced by Andronov and Pontrya-
gin in 1937, and it plays an important role in the theory of dynamical systems.
Conditions for structural stability of high-dimensional systems were formu-
lated in [23] as follows: A system must satisfy both Axiom A and the strong
transversality condition. From a mathematical point of view, let Cr(Rn,Rn)
denote the space of Cr vector fields of Rn into Rn. Let Diff r(Rn,Rn) be the
subset of Cr(Rn,Rn) consisting of the Cr diffeomorphisms: (a) Two elements
of Cr(Rn,Rn) are Cr ε-close (k ≤ r), or just Ck close, if they, along with their
first k derivatives, are within ε as measured in some norm. (b) A dynamical
system (vector field or map) is structurally stable if nearby systems have the
same qualitative dynamics.

The words nearby systems can be translated in terms of Ck conjugate
for maps and Ck equivalence for vector fields. Assume that the maps under
consideration act on compact, boundaryless, n-dimensional, differentiable
manifoldsM , rather than all of Rn. This assumption induces the so-called Ck
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topology given in [24]: The Ck topology is the topology induced on Cr(M,M)
by the measure of distance between two elements of Cr(M,M). Hence, the
notion of structural stability can be formally formulated as follows: Consider
a map f ∈ Diff r(M,M) (resp. a Cr vector field in Cr(M,M)). Then f is
structurally stable if there exists a neighborhood N of f in the Ck topology
such that f is C0 conjugate (resp. C0 equivalent) to every map (resp. vector
field) in N . From this definition, it follows that structural stability implies
a common and typical or generic property of a dynamical system to a dense
set of dynamical systems in Cr(M,M). We note that a property of a map
(resp. vector field) is said to be Ck generic if the set of maps (resp. vector
fields) possessing that property contains a residual subset in the Ck topology.

It was proved in [24] that the hyperbolic fixed points, periodic orbits,
and the transversal intersection of the stable and unstable manifolds of hy-
perbolic fixed points and periodic orbits are structurally stable and generic.
Also, structurally stable systems are generic. In terms of Ck topology, the
structural stability can be reformulated as follows: A diffeomorphism f is
Cr structurally stable if, for any Cr small perturbation g of f , there is a
homeomorphism h of the phase space such that

h ◦ f (x, y, z) = g ◦ h (x, y, z) (2)

for all points x in the phase space.
Generally, the determination of a Cr small perturbation g of f is not an

easy task. Most results in the literature do not give any form of g. In this
paper, we will give the exact form of the Cr small perturbation g for the gen-
eral 3-D quadratic map (1). Indeed, assume that the Cr small perturbation
g of f is also a 3-D quadratic map of the form

g :


x′ = d0 + d1x+ d2y + d3z + d4x

2 + d5y
2 + d6z

2 + d7xy + d8xz + d9yz
y′ = e0 + e1x+ e2y + e3z + e4x

2 + e5y
2 + e6z

2 + e7xy + e8xz + e9yz
z′ = f0 + f1x+ f2y + f3z + f4x

2 + f5y
2 + f6z

2 + f7xy + f8xz + f9yz
(3)

where (di, ei, fi)0≤i≤9 ∈ R30 are small perturbations of (ai, bi, ci)0≤i≤9 ∈ R30

to be determined if we assume that f and g are topologically conjugate. The
linear transformation h is defined by

h (x, y, z) =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x
y
z

 (4)
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with the condition of invertibility given by

d = (h22h33 − h23h32)h11 + (h31h23 − h21h33)h12 + (h21h32 − h22h31)h13 ̸= 0.
(5)

The simplest assumption is that h is linear. Therefore, all the results related
to the existence of this transformation are part of the whole set of possible
existing transformations.

Note that if such a transformation h exists, then there is an equivalence
relation, and the set of all maps is divided into classes of topologically con-
jugate maps. This implies that f and g have identical topological properties.
In particular, they have the same number of fixed and periodic points of
the same stability types. If f and g are invertible, the order of the points
is preserved, and if the maps are non-invertible, the order of points is also
preserved, but h maps forward orbits of f onto the corresponding forward
orbits of g.

The direct application of (2) requires tedious and very complicated cal-
culations. To avoid this problem, we use some results from linear algebra.
Indeed, it is well known that any matrix over R is similar to an upper trian-
gular matrix J which is the Jordan normal form. Finding this form is related
to knowing of the minimal polynomial. For 3 × 3 matrices, we have 6 cases
of Jordan normal forms as shown in [22]:

J1 =

 h11 0 0
0 h22 0
0 0 h33

 , J2 =

 h11 0 0
0 h22 0
0 0 h22


J3 =

 h11 0 0
0 h22 1
0 0 h22

 , J4 =

 h11 0 0
0 h11 0
0 0 h11


J5 =

 h11 1 0
0 h11 0
0 0 h11

 , J6 =

 h11 1 0
0 h11 1
0 0 h11

 .

(6)

Here hii ̸= 0 due to condition (5). Assume that the matrix defining the
transformation h is one of the matrices (Ji)1≤i≤6. Then the formula for h
is well defined, and we must look for the possible values of the parameters
(di, ei, fi)0≤i≤9 ∈ R30 in terms of (ai, bi, ci)0≤i≤9 ∈ R30 and (hii)1≤i≤3 defining
the matrices (Ji)1≤i≤6 . Indeed, for the first case (J1) we have
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

d0 = a0h11, d1 = a1
h11

h22
, d2 = a2, d3 = a3

h11

h33
, d4 =

a4
h11

, d5 = a5
h11

h2
22

d6 = a6
h11

h2
33
, d7 =

a7
h22

, d8 =
a8
h33

, d9 = a9
h11

h22h33

e0 = b0h22, e1 =
b1
h11

h22, e2 = b2, e3 = b3
h22

h33
, e4 =

b4
h2
11
h22,

e5 =
b5
h22

, e6 = b6
h22

h2
33
, e7 =

b7
h11

, e8 =
b8
h11

h22

h33
, e9 =

b9
h33

f0 = c0h33, f1 =
c1
h11

h33, f2 =
c2
h22

h33, f3 = c3, f4 =
c4
h2
11
h33

f5 =
c5
h2
22
h33, f6 =

c6
h33

, f7 =
c7

h11h22
h33, f8 =

c8
h11

, f9 =
c9
h22

.

(7)

For the second case (J2) we have

d0 = a0h11, d1 = a1, d2 =
a2h11

h22
, d3 =

a3h11

h22
, d4 =

a4
h11

d5 =
a5h11

h2
22

, d6 =
a6h11

h2
22

, d7 =
a7
h22

, d8 =
a8
h22

, d9 =
a9h11

h2
22

e0 = b0h22, e1 =
b1h22

h11
, e2 = b2, e3 = b3, e4 =

b4h22

h2
11

e5 =
b5
h22

, e6 =
b6
h22

, e7 =
b7
h11

, e8 =
b8
h11

, e9 =
b9
h22

f0 = c0h22, f1 =
c1h22

h11
, f2 = c2, f3 = c3, f4 =

c4h22

h2
11

f5 =
c5h22

h2
22

, f6 =
c6
h22

, f7 =
c7
h11

, f8 =
c8
h11

, f9 =
c9
h22

.

(8)

For the third case (J3) we have



d0 = a0h11, d1 = a1, d2 =
a2h11

h22
, d3 = −h11

a2−a3h22

h2
22

, d4 =
a4
h11

, d5 =
a5h11

h2
22

d6 = h11
a5−a9h22+a6h2

22

h4
22

, d7 =
a7
h22

, d8 = −a7−a8h22

h2
22

, d9 = −h11
2a5−a9h22

h3
22

e0 = c0 + b0h22, e1 =
c1+b1h22

h11
, e2 =

c2+b2h22

h22
, e3 = − c2+(b2−c3)h22−b3h2

22

h2
22

e4 =
c4+b4h22

h2
11

, e5 =
b5h22+c5

h2
22

, e6 =
(b5−c9)h22+(c6−b9)h2

22+b6h3
22c5

h4
22

e7 =
c7+b7h22

h11h22
, e8 = − c7+(b7−c8)h22−b8h2

22

h11h2
22

, e9 = −2c5+(2b5−c9)h22−b9h2
22

h3
22

f0 = c0h22, f1 =
c1h22

h11
, f2 = c2, f3 = − c2−c3h22

h22
, f4 =

c4h22

h2
11

f5 =
c5
h22

, f6 =
c5−c9h22+c6h2

22

h3
22

, f7 =
c7
h11

, f8 = − c7−c8h22

h11h22
, f9 = −2c5−c9h22

h2
22

.

(9)
For the fourth case (J4) we have
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

d0 = a0h11, d1 = a1, d2 = a2, d3 = a3, d4 =
a4
h11

, d5 =
a5
h11

d6 =
a6
h11

, d7 =
a7
h11

, d8 =
a8
h11

, d9 =
a9
h11

e0 = b0h11, e1 = b1, e2 = b2, e3 = b3, e4 =
b4
h11

, e5 =
b5
h11

e6 =
b6
h11

, e7 =
b7
h11

, e8 =
b8
h11

, e9 =
b9
h11

f0 = c0h11, f1 = c1, f2 = c2, f3 = c3, f4 =
c4
h11

, f5 =
c5
h11

f6 =
c6
h11

, f7 =
c7
h11

, f8 =
c8
h11

, f9 =
c9
h11

.

(10)

For the fifth case (J5) we have



d0 = b0 + a0h11, d1 =
b1+a1h11

h11
, d2 = − b1+(a1−b2)h11−a2h2

11

h2
11

d3 =
b3+a3h11

h11
, d4 =

b4+a4h11

h2
11

, d5 =
b4+(a4−b7)h11+a5h3

11+(b5−a7)h2
11

h4
11

d6 =
b6+a6h11

h2
11

, d7 = −2b4+(2a4−b7)h11−a7h2
11

h3
11

d8 =
b8+a8h11

h2
11

, d9 = − b8+(a8−b9)h11−a9h2
11

h3
11

e0 = b0h11, e1 = b1, e2 = − b1−b2h11

h11
, e3 = b3, e4 =

b4
h11

e5 =
b4−b7h11+b5h2

11

h3
11

, e6 =
b6
h11

, e7 = −2b4−b7h11

h2
11

, e8 =
b8
h11

, e9 = − b8−b9h11

h2
11

f0 = c0h11, f1 = c1, f2 = − c1−c2h11

h11
, f3 = c3, f4 =

c4
h11

f5 =
c4−c7h11+c5h2

11

h3
11

, f6 =
c6
h11

, f7 = −2c4−c7h11

h2
11

, f8 =
c8
h11

, f9 = − c8−c9h11

h2
11

.

(11)
For the sixth case (J6) we have



d0 = b0 + a0h11, d1 =
b1+a1h11

h11
, d2 = − b1−a2h2

11+(a1−b2)h11

h2
11

d3 =
b1+(a1−b2)h11+(b3−a2)h2

11+a3h3
11

h3
11

d4 =
b4+a4h11

h2
11

, d5 =
b4+(a4−b7)h11+(b5−a7)h2

11+a5h3
11

h4
11

d6 =
b4+(a4−b7)h11+(b8−a7+b5)h2

11+(a8+a5−b9)h3
11+(b6−a9)h4

11+a6h5
11

h6
11

d7 = −2b4−a7h2
11+(2a4−b7)h11

h3
11

, d8 =
2b4+(2a4−b7)h11+(b8−a7)h2

11+a8h3
11

h4
11

d9 = −2b4+(2a4−2b7)h11+(b8−2a7+2b5)h2
11+(2a5+a8−b9)h3

11−a9h4
11

h5
11

.

(12)
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

e0 = c0 + b0h11, e1 =
c1+b1h11

h11
, e2 = − c1+(b1−c2)h11−b2h2

11

h2
11

e3 =
c1+(b1−c2)h11+(c3−b2)h2

11+b3h3
11

h3
11

, e4 =
c4+b4h11

h2
11

e5 =
c4+(b4−c7)h11+b5h3

11+(c5−b7)h2
11

h4
11

e6 =
c4+(b4−c7)h11+(c5−b7+c8)h2

11+(b8+b5−c9)h3
11+(c6−b9)h4

11+b6h5
11

h6
11

e7 = −2c4+(2b4−c7)h11−b7h2
11

h3
11

, e8 =
2c4+(2b4−c7)h11+(c8−b7)h2

11+b8h3
11

h4
11

e9 = −2c4+(2b4−2c7)h11+(c8−2b7+2c5)h2
11+(b8−c9+2b5)h3

11−b9h4
11

h5
11

(13)

and
f0 = c0h11, f1 = c1, f2 = − c1−c2h11

h11
, f3 =

c1+c3h2
11−c2h11

h2
11

, f4 =
c4
h11

f5 =
c4−c7h11+c5h2

11

h3
11

, f6 =
c4−c7h11+(c5+c8)h2

11−c9h3
11+c6h4

11

h5
11

, f7 = −2c4−c7h11

h2
11

f8 =
2c4−c7h11+c8h2

11

h3
11

, f9 = −2c4−2c7h11+(2c5+c8)h2
11−c9h3

11

h4
11

.

(14)
From the expressions of the parameters (di, ei, fi)0≤i≤9 ∈ R30 in (7)–(14), we
conclude that there exists at least 23 forms of variations for these parameters
as follows:

u = α, u = αv + β

u = α v
w
, u = α v

w2 , u = α
v
, u = α v

ws
, u = α+βv

w

u = α+βv
w2 , u = α+βv

v2
, u = α+βv

ws
, u = α+βv

wv
, u = α+βv

v

u = s
(
α+βv
v2

)
, u = s

(
α+βv
v3

)
, u = α1+α2v+α2v2

v3
, u = α1+α2v+α2v2

v2

u = α1+α2v+α2v2

wv2
, u = wα1+α2v+α2v2

v4
, u = α0+α1v+α2v2+α2v3

vk
, k = 3, 4

u = α0+α1v+α2v2+α2v3+α3v4

vk
, k = 5, 6, u = α0+α1v+α2v2+α2v3+α3v4+α5v5

v6

(15)

Any variation in these curves of the parameters (di, ei, fi)0≤i≤9 ∈ R30

produce similar and equivalent dynamics of map (1). Thus the map (1) is
structurally stable when the variation is in the forms (15).

3 Example

In this section, we give an example to validate the above analysis. Indeed,
it was shown in [8] that any 3-D quadratic diffeomorphism with a quadratic
inverse and constant Jacobian can be written as
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g (x, y, z) =

 y
z

c0 + c1x+ c2y + c3z + c4y
2 + c5z

2 + c6yz

 (16)

where (ci)1≤i≤6 are the bifurcation parameters.
For the map (16), the different forms of maps equivalent to it are

g1 :


x′ = y

y′ = h22z
h33

z′ = c0h33 +
c1h33x
h11

+ c2h33y
h22

+ c3z +
c4h33x2

h2
11

+ c5h33y2

h2
22

+ c6z2

h33

(17)

g2 :


x′ = h11

h22
y

y′ = z

z′ = c0h22 +
c1h22x
h11

+ c2y + c3z +
c4h22x2

h2
11

+ c5h22y2

h2
22

+ c6z2

h22

(18)

g3 :


x′ = h11

h22
y − h11

h2
22
z

y′ = c0 +
c1
h11

x+ c2y
h22

− (c2−c3h22)z

h2
22

+ c4x2

h2
11

+ c5y2

h2
22

− 2c5yz
h3
22

z′ = c0h22 +
c1h22x
h11

+ c2y − (c2−c3h22)z
h22

+ c4h22x2

h2
11

+ c5y2

h22
+

(c5+c6h2
22)z2

h3
22

− 2c5yz
h2
22

(19)

g4 :


x′ = y
y′ = z

z′ = c0h11 + c1x+ c2y + c3z +
c4
h11

x2 + c5
h11

y2 + c6
h11

z2
(20)

g5 :


x′ = y
y′ = z

z′ = c0h11 + c1x− (c1−c2h11)y
h11

+ c3z +
c4x2

h11
+

(c4+c5h2
11)y2

h3
11

+ c6z2

h11
− 2c4xy

h2
11

(21)

g :


x′ = y

y′ = c0 +
c1
h11

x− (c1−c2h11)y

h2
11

+ e3z + e4x
2 + e5y

2 + e6z
2 + e7xy + e8xz + e9yz

z′ = f0 + c1x+ f2y + f3z + f4x
2 + f5y

2 + f6z
2 + f7xy + f8xz + f9yz

(22)
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where 

e3 =
c1−c2h11+c3h2

11+h3
11

h3
11

, e4 =
c4
h2
11
, e5 =

c4+c5h2
11

h4
11

e6 =
c4−c7h11+c5h2

11+c6h4
11

h6
11

, e7 = − 2c4
h3
11
, e8 =

2c4
h4
11

e9 = −2c4+2c5h2
11

h5
11

, f0 = c0h11, f2 = − c1−c2h11

h11

f3 =
c1+c3h2

11−c2h11

h2
11

, f4 =
c4
h11

, f5 =
c4+c5h2

11

h3
11

f6 =
c4+c5h2

11+c6h4
11

h5
11

, f7 = − 2c4
h2
11
, f8 =

2c4
h3
11
, f9 = −2c4+2c5h2

11

h4
11

.

(23)

4 Conclusion

In this paper, the concept of structural stability was discussed for the case of
3-D quadratic mappings. We give the exact form of the small perturbation
for these maps. The relevance of this result is that almost all results in the
literature do not give any form for these perturbations.
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