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“Order and chaos belong together in God’s creation, but potential chaos of another kind was introduced when God
created human beings endowed with freedom.” –Bernhard W. Anderson.

In this letter, we prove rigorously the persistence property of chaos in high dimensions stated
as a conjecture in [1]. The idea of the proof is based on a simple remark on the form of the
variation of bifurcation parameters. The relevance of this result is that persistent chaos in high
dimensions was observed and tested numerically, but without any rigorous proof. Also, this
proof shows that persistent chaos still occurs in typical nonlinear high-dimensional dynamical
systems such as randomly sampled high-dimensional vector fields (ODEs) or maps.

1 Introduction

Dynamical persistence means that a behavior type, i.e., equilibrium, oscillation, or chaos does
not change with functional perturbation or parameter variation. Mathematically, persistent chaos
(p-chaos) of degree p for a dynamical system can be defined as follows: Assume a map fξ :
X → X ⊂ Rd depends on a parameter ξ ∈ Rk. The map fξ has chaos of degree-p on an open
set O ⊂ X that is persistent for ξ ∈ U ⊂ Rk if there is a neighborhood N of U such that ∀
ξ ∈ N , the map fξ retains at least p ≥ 1 positive Lyapunov characteristic exponents (LCEs) for
Lebesgue almost every X in O.

In this definition, the choice of p is arbitrary. For example, the condition where p equals
the number of positive LCEs is a very strict constraint; specifying a minimum p or ratio of p to
the maximum number of positive exponents are weaker. Flexibility allows one to analyze (say)
systems with 106 unstable directions in which a change in 1% of the geometry is undetectable,
but a 50% change is. Robust chaos is defined by the absence of periodic windows and coexisting
attractors in some neighborhood of the parameter space. The existence of these windows in some
chaotic regions means that small changes of the parameters would destroy the chaos, implying
the fragility of this type of chaos [8]. Hence, the notion of persistent chaos differs from that
of a robust chaotic attractor in several ways. In particular, the uniqueness of the attractor is
not required on the set U since there is little physical evidence indicating that such strict forms
of uniqueness are present in many complex physical systems. For a low-dimensional system,
uniqueness is markedly more difficult to establish.

Some real-world systems show dynamical persistence, for example, the decline of biological
species in natural habitats as shown in [5]. The main issues for decline of species are concerned
with the effects of spatial synchrony and dynamical chaos. In this case, persistence can be viewed
as a problem and eradication as an achievement. For this case, ecologists and epidemiologists use
very similar mathematical structure of the population dynamics. In [6], it was shown that a model
of a ninth-order truncated ordinary differential equation (ODE) model of 3-D incompressible
convection displays cycling chaos, i.e., the attractors consist of a heteroclinic cycle between
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chaotic sets. This behavior is robust to perturbations that preserve the symmetry of the system.
In [7], it was observed that a model of discretionary consumption dynamics (i.e., an endogenous
transformation of a society inhabited by boundedly rational interactive consumers) shows the
existence of a persistent chaotic regime of different social standards. Other examples can be
found in [3-4].

Some results about persistence of chaos in high dimensions can be found in [1-2]. It was
shown in [1] that as the dimension of a typical dissipative dynamical system is increased, the
number of positive Lyapunov exponents increases monotonically, and the number of parameter
windows with periodic behavior decreases. The method of analysis is an extensive statistical sur-
vey of universal approximators introduced in [9] given by single-layer recurrent neural networks
of the form

xt = fs,β,ω = β0 +
n∑
i=1

βi tanh s

ωi0 + d∑
j=1

ωijxt−j

 (1.1)

which are maps from Rd to R. Here n is the number of neurons, d is the number of time
lags which determines the system’s input embedding dimension, and s is a scaling factor for
the connection weights ωij . The initial condition is (x1, x2, ..., xd), and the state at time t is
(xt, xt+1, ..., xt+d−1). In [1] the k = n (d+ 2) + 1-dimensional parameter space was taken as

follows: (i) βi ∈ [0, 1] is uniformly distributed and rescaled to satisfy
n∑
i=1

β2
i = n, (ii) ωij is

normally distributed with zero mean and unit variance, and (iii) the initial condition xj ∈ [−1, 1]
is uniform. The distributions of βi and ωij are denoted by mβ and mω and form a product
measure on the space of parameters and initial conditions. We note that the approximation
theorems of [9] and time-series embedding of [10] establish an equivalence between these neural
networks and general dynamical systems [2].

These results lead to the following conjecture for persistent chaos in high dimensions formu-
lated in [1] as follows: Given fs,β,ω, if k and d are large enough, the probability with respect to
mβ ×mω of the set (β, ω), defined above (the parameters βi and ωij) is large and approaches 1
as k →∞.

This conjecture means that if fs,β,ω is a network of the form (1.1) with a sufficiently large
number d of dimensions and number of parameters k = n(d+2)+1, then there exists an open set
of significant positive Lebesgue measure in parameter space Rk for which chaos will be degree-p
persistent, with p→∞ as d→∞.

Indeed, if we consider two maps fs,β,ω and fr,α,ϕ of the form (1.1), then it is easy to remark
that both maps display the same dynamical behavior (the same xt) when{

αi = βi, i = 0, n
ϕij =

ωij

r s, i = 1, n, j = 0, d
(1.2)

That is, xt = fr,β,ωr s = fs,β,ω for all r, α, ϕ satisfying (1.2). Thus the above conjecture is
true not only for the announced values in [1], but for all d, k ∈ N. We note that since net-
works are universal function approximators, then persistent chaos still occurs in typical nonlinear
high-dimensional dynamical systems such as randomly sampled high-dimensional vector fields
(ODEs) or maps.

2 Conclusion

In this letter, a proof of the persistence property of chaos in high dimensions stated as a conjecture
in [1] was given. The relevance of this result is that persistent chaos in high dimensions was
previously observed and tested numerically, but without any rigorous proof. Also, this proof
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shows that persistent chaos still occurs in typical nonlinear high-dimensional dynamical systems
such as randomly sampled high-dimensional vector fields (ODEs) or maps.
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