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There are many examples of nonconnected chaotic attractors consisting of several components.
The determination of an overall period of such a system is typically done only by a numerical
integration of the system. In this letter, we provide a rigorous proof that the exact value of
the overall period of a particular 2-D chaotic attractor from an iterated map is two once the
attractor has been partitioned and quantized into disconnected sets. As far as we know, there
are no examples of a rigorous proof for such a property in the current literature.
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1. Introduction

Firstly, we need the following definitions about
connected sets and their overall periods:

Definition 1.1. A topological space X is said to
be disconnected if it is the union of two disjoint
nonempty open sets. Otherwise, X is said to be
connected. A subset of a topological space is said to
be connected if it is connected under its subspace
topology.

Definition 1.2. The overall period of a set is equal
to the number of connected components composing
this set.

This definition of the overall period is a com-
monly used term by scientists and mathematicians.
The origin of the concept is from population biol-
ogy, where the corresponding strange attractors are

composed of several pieces. The disconnected pic-
ture describes the reality observed in nature in the
distributions, dynamics, and the locations of multi-
ple animals.

Secondly, following this observation, we note
that the pictures of many chaotic attractors appear
to be a single set. Many others seem to be composed
of several distinct pieces. The only confirmation of
their geometry is numerical simulation. There are
many examples of nonconnected chaotic attractors
consisting of several components [Cazelles & Fer-
riere, 1992; Barahona & Poon, 1996]. An example
of a connected chaotic set can be found in [Peitgen
et al., 1982]. Some examples of nonconnected attrac-
tors from [Zeraoulia & Sprott, 2011] are shown in
Fig. 1. As far as we know, there is no mathematical
proof of such a property for any examples of such
systems.
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Fig. 1. Attractors of the map (1) with (a) a = 2.4, b=1.3, (b) a =2.9,b=0.6, (¢) a =2.9,b=0.8, (d) a = 3.3, b =04,
(e)a=4,b=038, (f) a=4, b=0.9. From [Zeraoulia & Sprott, 2011].

1350046-2



A Rigorous Determination of the Overall Period in the Structure of a Chaotic Attractor

Population dynamics in ecological systems have
several real-world applications. For example, one
problem is concerned with whether fishermen can
get a fairly uniform catch throughout the year. Typ-
ically, these applications include population bursts
and population collapse. On the other hand, in
ecological models whose chaotic component is cou-
pled with strong periodicity [Cazelles & Ferriere,
1992; Barahona & Poon, 1996], the corresponding
strange attractors are split into several disconnected
pieces. The iteration and therefore the location of
any point follows a precise order before falling back
into the initial piece. This scenario creates an over-
all period in the structure of these attractors, which
is equal to the number of pieces. Generally, this
pattern occurs in some special discrete dynamical
systems [Curry & Yorke, 1978]. The determination
of an overall period of a system is done only by a
numerical integration of such a system. For exam-
ple, the system in [Cazelles & Ferriere, 1992; Bara-
hona & Poon, 1996] has a nonconnected chaotic
attractor consisting of seven disconnected compo-
nents. Hence the overall period for this case is seven.
In many other cases, the overall periodicity is not
evident.

In this letter, we provide a rigorous proof that
the exact value of the overall period of a chaotic
attractor produced by a particular 2-D discrete iter-
ative system with a rational fraction is two. As far
as we know, there is no rigorous proof for such a
property in the current literature.

2. A Rigorous Determination of the
Overall Period

Rational chaotic systems are relatively rare in the-
ory and practice [Zeraoulia & Sprott, 2011; Lu et al.,
2004; Chang et al, 2005]. In [Lu et al., 2004] a
1-D discrete iterative system with a rational frac-
tion of the form g(z) = m — ax was discovered
in a study of evolutionary algorithms.The dynam-
ics of this map is much more complicated than
the dynamics of the logistic system. In [Chang
et al., 2005] an extended version of the 1-D map
given in [Lu et al., 2004] to 2-D was given as
hz,y) = (m — ay, W + bz). This map has
more complicated dynamical behavior than the pre-
vious 1-D map. A relatively new and very simple
2-D map, characterized by the existence of only
one rational fraction with no vanishing denomina-
tor is constructed in [Zeraoulia & Sprott, 2011] and

given by

—a

Tn4+1 = n

—= T
1492 (1)
Yn+1 = Tp + byna

where ¢ > 0 and 0 < b < 1 are bifurca-
tion parameters. Note also that some nonconnected
chaotic systems are relevant for the modeling of
special ecological systems, whereas map (1) typi-
cally has no direct application to particular physi-
cal systems, but it serves to exemplify these kinds
of dynamical behaviors. Thus an analytical and
numerical study is warranted. Map (1) produces
several chaotic attractors obtained by the quasi-
periodic route to chaos [Zeraoulia & Sprott, 2011].
Some of them along with quasi-periodic orbits are
shown in Fig. 1. It is remarkable that all these phase
portraits are composed of two separated compo-
nents. In this case, it seems that the overall period
of system (1) is two. This result is based on the pic-
tures shown in Fig. 1. In this case, we will show
rigorously that the overall period of the chaotic
attractors produced by map (1) is two.

Theorem 1. The owverall period of the chaotic
attractors produced by map (1) is two for all
a>0.

Proof. For the case with a = 0, we observe that
for any starting value zg € R, we have x,, = 0
for any integer n > 0. Thus, the attractor is lim-
ited to the y-axis with a fast (exponential) con-
vergence towards the fixed point (0,0). Thus the
resulting set (fixed point (0,0)) is connected, but
the corresponding periodicity in this particular case
is one. Hence, we must assume that a > 0. In
the following proof we make use of inequality con-
straints to determine the trajectory of iterations
of the map among the four quadrants of the x,—
yn, plane. Indeed, from map (1), it is easy to show
that sgn(x,4+1) = —sgn(x,) since ﬁ < 0 for all
a > 0 and sgn(yn4+1 — byn) = sgn(zy,). Here sgn(-) is
the standard signum function that gives £1 accord-
ing to the sign of its argument. If x, > 0, then
Yn+1 > byn, and if x, < 0, then yo+1 < by,.
Thus, if z, > 0 and y, > 0, then y,41 > 0,
and if z, < 0 and y, < 0, then y,+1 < 0. Also,
sgn(byn+1 — Ynt2) = sgn(z,). If x, > 0, then
Yn+2 < bypt1, and if x, < 0, then yp40 > bypt1.
Thus, if z, > 0 and y,+1 < 0, then y,40 < 0,
and if x, < 0 and yp+1 > 0, then y,+2 > 0.
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These inequalities determine the positions of the
points (%n, Yn), (Tnt1,Ynt1) and (42, Ynt2), and
we remark that the values of (y,), are distributed
according to the signs of (z,),. The next points
(Tnaks Yntk) and (Tpakr1, Ynik+1) do not have the
same location since sgn(yn+14% — bYnir) = sgn(xy,)
if k is even and sgn(yYntr+2 — bYntkr1) = —sgn(x,)
if k£ is odd. This means that (z,41,yn+1) and
(Tn+2, Ynt2) cannot be on the same side of the plane
Tn — Yy for all n € N, and the case where x, 11 = =,
implies that z,, = 0 for all @ > 0. This means that
any values (z,,yy,) and (2, yn) in the graph of a
chaotic attractor of map (1) are equal if and only if
Ty = Ty = 0 and y, = Y, = 0. Thus the only com-
mon point between the two different pieces is the
fixed point P = (0,0). Thus we have proved that the
distribution of all the points (z,,y,) in the graph
of a chaotic attractor of map (1) are located on two
different curves with no intersection except at the
fixed point P = (0,0). Thus any chaotic attractor
of map (1) must be composed of two different con-
nected components (curves here), and hence it is not
connected. Finally, the overall period of map (1) is
exactly two by the above rigorous proof. MW

3. Conclusion

In this paper, we provide a rigorous proof that
the exact value of the overall period of a partic-
ular chaotic attractor produced by a 2-D discrete

iterative system with a rational fraction is two. As
far as we know, there is no rigorous proof of such a
property in the current literature. This result opens
some new directions in studies of the geometry of
chaotic attractors such as possible laws for the dis-
tribution of points in space occupied by such an
attractor.
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