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Fractal Basins in the Lorenz Model

I. Djellit1**, J. C. Sprott2, M. R. Ferchichi1
1Laboratory of Mathematics, Dynamics and Modelization, Annaba-Algeria
2Department of Physics, University of Wisconsin, Madison, WI 53706 USA

(Received 29 December 2010)
The Lorenz mapping is a discretization of a pair of differential equations. It illustrates the pertinence of compu-
tational chaos. We describe complex dynamics, bifurcations, and chaos in the map. Fractal basins are displayed
by numerical simulation.

PACS: 05.45.−a DOI: 10.1088/0256-307X/28/6/060501

Nonlinear maps have contributed greatly to the
understanding of complex dynamics.[1−8] An attractor
of a dynamical system is a subset of the state space
to which orbits originating from typical initial condi-
tions tend as time increases. It is very common for
dynamical systems to have more than one attractor.
Such attractors can be static, periodic, quasiperiodic,
or chaotic and are contained within a basin of attrac-
tion, which is the set of initial conditions that even-
tually approach the attractor. Thus the qualitative
behavior of the long-time dynamics of a given system
can be fundamentally different, depending upon the
basin in which the initial condition lies. Such basins
can vary greatly in their topological structure.

Non-uniqueness poses a challenge for predicting
and controlling the dynamics in various areas of en-
gineering and environmental sciences. Sometimes the
basin boundaries are fractal sets, which can make the
identification of the final behavior extremely difficult.
Fractal basin boundaries have been observed and de-
scribed in several models.

In this Letter, we investigate the basic patterns
of complex non-uniqueness in the dynamical behavior
of a class of Lorenz models proposed in Ref. [1]. The
study is focused on one research area: the detection of
fractal basin sets and the identification and verifica-
tion of some properties of fixed points in these maps.

The basins of attraction, defining the initial con-
ditions leading to a certain attractor, may be fractal
sets. The fractal structure may be revealed by frac-
tal basin boundaries or by patterns of self-similarity.
The beauty inherent in its complex nature has be-
come a fundamental ingredient of theory and chaotic
dynamics of nonlinear systems. The analysis of these
structures is useful for obtaining information about
the future behavior of attractors and their basins and
it provides important knowledge about the relation
between them.

Fractal basin boundaries make it difficult to pre-
dict the final state of a system because the initial val-
ues can be known only to within some precision. We

conclude that non-unique dynamics associated with
extremely complex structures of the basin boundaries
can have a profound effect on our understanding of
the dynamics. Along with the references cited therein,
the Lorenz model is of interest and offers a richness of
bifurcations and an interesting set of dynamical phe-
nomena due to the presence of critical or nondefini-
tion sets.[4] The model is first investigated as a two-
parameter quadratic family and its domain of fractal-
ization is explained by using a nonclassical singularity
set. The critical curve separates the plane into two
regions having different numbers of real inverses (here
one and three).

In this study, first we describe some peculiar prop-
erties of the Lorenz map, their dependence on the pa-
rameters and stability of the fixed points. The qual-
itative behavior and bifurcations of this map are ex-
amined in by using a qualitative theory and standard
bifurcation theory. Then, we discuss some cases where
bifurcations can lead to creation of holes in the basins
of attraction and can cause qualitative changes in the
structure of the domain as parameters are varied. Fur-
thermore, critical curves are considered as a way to
examine bifurcation basins.

Consider a dynamical system generated by a fam-
ily of two-dimensional, continuous, noninvertible maps
𝑇𝑏 defined by

𝑇𝑏 :

{︂
𝑥′ = (1 + 𝑎𝑏)𝑥− 𝑏𝑥𝑦,

𝑦′ = (1− 𝑏)𝑦 + 𝑏𝑥2,
(1)

where 𝑎 and 𝑏 are real parameters, the functions
𝑓(𝑥, 𝑦) = (1+𝑎𝑏)𝑥−𝑏𝑥𝑦 and 𝑔(𝑥, 𝑦) = (1−𝑏)𝑦+𝑏𝑥2 are
continuous and differentiable and 𝑇𝑏 is of type 𝑍1 < 𝑍3

whose critical curve 𝐿𝐶0 divides the plane into 𝑡𝑤𝑜
areas 𝑍1 and 𝑍3 with one and three antecedents, re-
spectively.

This map was studied by Lorenz and others cited
therein. We start by giving a general summary of their
results.

In Ref. [1], Lorenz studied this system obtained as
an approximation to an ordinary differential equation
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by using Euler’s forward differencing scheme and iter-
ating the system of difference equations with a time
increment denoted here by the parameter 𝑏. He was
interested in the chaotic behavior that prevails when 𝑏
is excessively large, thereby illustrating the pertinence
of the concept of computational chaos. He proposed
the following scenario for the breakup of an invariant
circle which develops regions of increasingly sharper
curvature until at a critical parameter value it devel-
ops cusps and the system thereafter exhibits chaos on
an invariant set with loops.

In Ref. [8], the authors revisited this problem in
more detail and showed that the invariant circle is
really destroyed in a global bifurcation before the ap-
pearance of the cusps. Instead, the global unstable
manifolds of saddle-type periodic points are the ob-
jects that develop cusps and subsequently loops or
antennae.

Marotto[6] gave an analysis of the mapping as fol-
lows:

𝑇𝑎,𝑏 :

{︂
𝑥′ = (𝑎𝑥+ 𝑏𝑦)(1− 𝑎𝑥− 𝑏𝑦),

𝑦′ = 𝑥.
(2)

He showed the existence of two distinct attractors, one
resembling the quasi-linear Hénon attractor and the
other consisting of points in an area. Whitehead and
Macdonald[2] considered a mapping derived from a dif-
ferential equation model of turbulence, given here by

𝑇𝜈,𝜇,𝜀 :

{︂
𝑥′ = (1− 𝜀𝜈)𝑥− 𝜀𝑥𝑦,

𝑦′ = (1 + 𝜀𝜇+ 𝜀𝑥)𝑦.
(3)

This mapping, as with the other models, displays
chaos. For 𝜀 = 1, ELabbasy et al.[5] gave the theo-
retical analysis, while Tsybullin and Yudovich [3] de-
termined interesting invariant manifolds and sets. All
these maps have identical behavior and display homo-
clinic structure associated with the basin bifurcation
between bounded and unbounded states.

The fixed points of 𝑇 in Eq. (1) are solutions ob-
tained by a trivial manipulation of Eq. (1) with 𝑥0 = 𝑥
and 𝑦0 = 𝑦. Besides the solution (0; 0), we observe
that additional fixed points exist if 𝑎 > 0. We focus
attention on bifurcations playing an important role in
the dynamics, those happening for 𝑎 > 0 and 𝑏 > 0.
We can state the following proposition:

Proposition 1: If 𝑎 < 0, then 𝑂(0; 0) is the unique
fixed point of the map 𝑇𝑏 defined by Eq. (1). If 𝑎 > 0,
then two further fixed points, 𝑃 and 𝑃0, exist, sym-
metric with respect to the 𝑦-axis, with 𝑥 = ±

√
𝑎;

𝑦 = 𝑎. Let us investigate the qualitative behaviors
of the map (1). As usual, the local dynamics of map
(1) in the neighborhood of a fixed point is dependent
on the Jacobian matrix. The Jacobian is evaluated at
the fixed point, which we denote by 𝐽 = det𝐷𝑇 (𝑥, 𝑦).
Let

𝐽 =

⃒⃒⃒⃒
⃒ 1 + 𝑎𝑏− 𝑏𝑦 −𝑏𝑥

2𝑏𝑥 1− 𝑏

⃒⃒⃒⃒
⃒

be the Jacobian matrix of 𝑇 at the state variable
(𝑥; 𝑦). We consider now the conditions for local stabil-
ity of the fixed point 𝑂(0; 0) in terms of the parameters
in Eq. (1). The Jacobian matrix 𝐽(0,0) in 𝑂(0; 0) has
two eigenvalues 1+𝑎𝑏 and 1−𝑏. For 𝑏 > 0 we consider
the cases with 𝑎 > 0 and 𝑎 = 0 and by a simple com-
putation, it is straightforward to obtain the following
result.

The fixed point 𝑂(0; 0) is a saddle if 𝑏 ∈ [0; 2].
When 𝑎 > 0, 𝑂(0; 0) is a source if 𝑏 ∈ [2;∞] and when
𝑎 > 0, 𝑂(0; 0) is non hyperbolic if 𝑎 = 0. We can see
that when 𝑏 = 2, for 𝑎 > 0, one of the eigenvalues of
𝑂(0; 0) is −1 and the other is not one with module.
Thus the flip bifurcation occurs with a birth of a pair
of saddle-cycles of order 2.

Proposition 2: If 𝑎 = 0, the map (1) undergoes a
pitchfork bifurcation at 𝑂(0; 0).

Proof: By simple computation, we can prove this
proposition.

Proposition 3: For 𝑎 > 0 and 𝑏 = 2, the map (1)
undergoes a basin bifurcation between bounded and
unbounded.

From the Jacobian matrix, we can see that
det𝐷𝑇 (𝑥, 𝑦) = (1 − 𝑏)(1 + 𝑎𝑏 − 𝑏𝑦) + 2𝑏2𝑥2 vanishes
on two lines given by 𝑦 = 1

𝑏 (1 + 𝑎𝑏) + 2𝑏𝑥2

(1−𝑏) for 𝑏 ̸= 0
and 𝑏 ̸= 1 or 𝑥 = 0 for 𝑏 = 1. The second curve given
by 𝐿𝐶−1: 𝑦 = 1

𝑏 (1 + 𝑎𝑏) + 2𝑏𝑥2

(1−𝑏) (obtained by setting
𝐽 = 0) is a curve of merging preimages and we can
state as follows:

Proposition 4: For 𝑎 > 0, 𝑏 > 0 and 𝑏 ̸= 1, the
phase plane includes a region of noninvertibility of the
map (1). The noninvertibility region is an unbounded
set defined by 27(1−𝑏)2𝑥2−4𝑏(𝑦−(1+𝑎𝑏)(1−𝑏)/𝑏)3 <
0. This curve possesses a pointing cusp on the 𝑦-axis
at 𝑥 = 0. The antecedents have coordinates (𝑥, 𝑦) such
that from map (1), 𝑥 satisfies 𝑏2𝑥3−𝑏𝑥(𝑦′−(1+𝑎𝑏)(1−
𝑏))/𝑏)−(1−𝑏)𝑥′ = 0 and 𝑦 = ((1+𝑎𝑏)𝑥−𝑥′)/𝑏𝑥. More-
over, the map 𝑇 has 𝑍1 < 𝑍3 whose critical curve is
𝐿𝐶: 27((1 − 𝑏)2𝑥2 − 4𝑏(𝑦 − (1 + 𝑎𝑏)(1 − 𝑏)/𝑏)3 = 0
with an image 𝐿𝐶−1 that separates the plane into
two areas 𝑍1 and 𝑍3 where there exist one and three
antecedents, respectively. We now consider the condi-
tions for asymptotic stability of the fixed point 𝑃 (resp.
𝑃0) in terms of the parameters of Eq. (1). 𝑃 is a
nontrivial fixed point. Under certain conditions, the
map (1) also undergoes a flip bifurcation at 𝑃 as
shown with 𝐽(±

√
𝑎,𝑎) = 𝜆2 + 𝜆(𝑏 − 2) + 2𝑏2𝑎 − 𝑏 + 1.

Let 𝜆1 and 𝜆2 be the two real roots, we have: (i)
𝑃 (

√
𝑎, 𝑎) is a sink if one of the following conditions

holds: 0 < 𝑏 < 4
1+

√
1−8𝑎

, 0 < 𝑎 < 1
8 , or 𝑏 < 4,

𝑎 = 1
8 . (ii) 𝑃 (

√
𝑎, 𝑎) is a saddle if 𝑎 ∈ [0; 1

8 ] and 𝑏 cov-
ering [ 4

1+
√
1−8𝑎

; 4
1−

√
1−8𝑎

]. (iii) 𝑃 (
√
𝑎, 𝑎) is a source if

one of the following conditions holds: 4
1−

√
1−8𝑎

< 𝑏,
0 < 𝑎 < 1

8 , or 𝑏 > 4, 𝑎 = 1
8 . For 𝑎 > 1

8 , and 𝑏 = 1
2𝑎 we

can obtain that the eigenvalues of 𝑃 (resp. 𝑃0) are a
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pair of conjugate complex numbers with module one.
From the above, one can draw the following conclu-
sion.

Proposition 5: If 𝑏 = 1
2𝑎 , the map (1) undergoes

a Neimark–Sacker bifurcation at 𝑃 (
√
𝑎, 𝑎). Consider

the case 𝑏 > 1 as shown in Fig. 1. For 𝑏 = 1.5, we
have two chaotic attractors 𝐴1 and 𝐴2 whose imme-
diate basins are delimited by the stable manifold of
the saddle fixed point 𝑂(0, 0). The right and left
branches of this unstable manifold converge toward
the two chaotic attractors and are dense inside them.
We can see in Fig. 1 that the immediate basin of 𝐴1

(resp. 𝐴2) has a hole 𝐷2 (resp. 𝐷1) which is a con-
nected component of the basin of 𝐴2. The islands 𝐷𝑖,
𝑖 = 1, 2 belong to the area 𝑍1.

A

F F

A

D D

O

Fig. 1. Attractors 𝐴1 and 𝐴2 for 𝑎 = 0.5, 𝑏 = 1.5.

A

F F

A

DD

O

Fig. 2. Islands converge to 𝐹𝑖 and 𝐷𝑖 cross 𝐿𝐶, 𝑎 = 0.5,
𝑏 = 1.513.

A

F F

⇁O

Fig. 3. Homoclinic bifurcation (1.516 < 𝑏 = 𝑏* < 1.517).

For 𝑏 = 1.513, Fig. 2 shows that the island 𝐷1

(resp. 𝐷2) has entered inside 𝑍3 and then we obtain
a sequence of preimages of 𝐷1 (resp. 𝐷2) converg-
ing toward the unstable focus 𝐹2 (resp. 𝐹1). Since
the boundaries of 𝐷𝑖 and their preimages are the con-
nected components of the stable manifold of the sad-

dle 𝑂(0, 0), an infinity of heteroclinic orbits appears
to connect 𝑂(0, 0) and 𝐹1 (resp. 𝐹2). Each orbit con-
tains a point belonging to the boundary of 𝐷1 (resp.
𝐷2).

D2

D1

'

D0 D0

D2

'

D1
'

LC-1 LC-1
' LC LC''

'

'

'

a/⊲֒ b/⊲

֓⊲

֓⊲

⊲

⊲

Fig. 4. First tangential contact between 𝐿𝐶 and the is-
land 𝐷′

1.

′

′

LC

D1

D2,3

D2,2

LC-1

′D2,1

D0

'

a/⊲֒ b/⊲

⊲

֓⊲

⊲

⊲

Fig. 5. Other bifurcations which give an arborescent se-
quence of islands.

For 𝑏 = 1.517, Fig. 3 shows that the two at-
tractors have merged into a unique chaotic attrac-
tor 𝐴. This merger coincides with a homoclinic bi-
furcation of the saddle point 𝑂(0, 0) that occurs for
1.516 < 𝑏 = 𝑏* < 1.517. A plot of the fractal basins
associated with a dynamical system provides a quali-
tative indication of the difficulty in predicting its fu-
ture evolution. Since the relation between fractacality
and nonlinear dynamics has been established, we use
a numerical technique to characterize the fractal na-
ture of the basins. For the case 𝑎 = 0.1 and varying
the parameter 𝑏, there are two stable fixed points of
the node type, each with an unconnected basin. We
observe that the island number increases when 𝑏 de-
creases. For 𝑏 = 2.7, there is a first tangential contact
between 𝐿𝐶 and 𝐷′

1 (the yellow island in Fig. 4). For
𝑏 = 2.35, a new tangential contact between 𝐿𝐶 and
𝐷2 occurs as shown in Fig. 5, after which each island
is divided in two islands. Therefore, there are many
bifurcations that change the number of islands, be-
ginning at 𝑏 = 2.7. This kind of bifurcation repeats
several times and at the end, the basin is strongly
fractal.
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′

′

′
′

′

′

LCϕ

LC-1 LC-1

LC

'

D1

D0

D1

D0D2,2

D2,3
D2,3

D2,2

'D2,1D2,1

'

'

a/⊲֒ b/⊲

⊲

֓⊲

⊲

⊲

Fig. 6. Fractal basin.

Basins constitute an interesting object of study by
themselves. The strong dependence on parameters
generates a rich variety of complex patterns on the
plane and gives rise to different types of basin fractal-
ization as a consequence, such as contact bifurcations
between a critical curve segment and the basin bound-
ary. Taking into account the complexity of the matter
and its nature, the study of these phenomena can be
carried out only by numerical investigation guided by
fundamental considerations as found in Ref. [4].

For 𝑏 = 2.05, Fig. 6 shows that we are close to the
bifurcation value at 𝑏 = 2 that leads to basin transfor-

mation from a bounded basin to an unbounded basin
for 𝑏 < 2. The saddle fixed point at 𝑂(0, 0) has be-
come an unstable node, with the birth of a pair of
2-cycles of the saddle type, symmetric with respect to
the 𝑦-axis. Lorenz predicted chaotic behavior in his
map model. His paper is a milestone in the study of
deterministic nonlinear dynamical systems. This fact
has fundamental and known consequences. We clarify
the concept of fractacality by evaluating and plotting
basins computationally.
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