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In this paper, we focus on the synchronization between integer-order chaotic systems and a class of
fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding
mode method is proposed to accomplish this end for different initial conditions and number of
dimensions. More importantly, the vector controller is one-dimensional less than the system.
Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme,
which are the synchronization between a fractional-order Chen chaotic system and an integer-order T
chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen’s
system and an integer-order hyperchaotic system, and the synchronization between a fractional-order
hyperchaotic system based on Chen’s system and an integer-order Lorenz chaotic system. Finally,
numerical results are presented and are in agreement with theoretical analysis. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4721996]

Fractional-order chaotic systems are an extension of
integer-order chaotic systems developed by mathemati-
cians and are more universal. However, there have been
relatively few applications of such systems. Examples of
the synchronization of integer-order chaotic systems and
the synchronization of fractional-order chaotic systems
have been widely reported. There are few results on the syn-
chronization between a fractional-order chaotic system and
an integer-order chaotic system to our best knowledge.
Therefore, this paper focuses on the synchronization
between integer-order chaotic systems and a class of
fractional-order chaotic system to expand the applicability
of the theory. A new sliding mode control method with few
control terms is proposed to illustrate the effectiveness of the
scheme. We report results from numerical computations
and theoretical analysis which are a perfect bridge between
fractional-order chaotic systems and integer-order chaotic
systems. As the synchronization of integer-order chaotic
systems and fractional-order chaotic systems are employed
extensively in research and engineering applications, we
expect our theory to be potentially useful.

. INTRODUCTION

Since Pecora and Carroll' proposed a synchronization
method of chaotic systems in 1990, chaos synchronization has
been extensively studied in a variety of contexts such as
power systems,” engineering,” physics," biology,” and chemis-
try.® Synchronization is based on the closeness of the frequen-
cies of periodic oscillations in two systems, one of which is
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the drive and the other is the response. Many methods have
been used to synchronize chaotic systems including sliding
mode control,” ' linear feedback control,'!!? adaptive con-
trol theory,"® back-stepping control,'*'3 active control,'*'®
and fuzzy control.'*>°

Fractional calculus is a much older classical mathematical
notion with the same three-hundred year history as integer cal-
culus. In recent years, it has found application in many areas
of physics®' and engineering.** At the same time, control and
synchronization of fractional-order chaotic systems have
made great contributions. Some papers discuss the synchroni-
zation of general fractional-order chaotic systems,>> > while
others consider special classes of fractional-order chaotic
systems.?® 8

However, there are few previous papers considering
synchronization between integer-order chaotic systems and a
class of fractional-order chaotic system with different struc-
ture and dimensions. To the best of our knowledge, none of
the previous studies employ vector controllers. Obviously,
the synchronization between integer-order chaotic systems
and fractional-order chaotic systems is more difficult than
the synchronization between integer-order chaotic systems
or fractional-order chaotic systems for different order of their
error dynamical system.

Motivated by the above discussion, there are four advan-
tages of our approach. First, based on sliding mode control
(SMC) and the stability theorem, a new method for chaos syn-
chronization between integer-order chaotic systems and a
class of fractional-order chaotic system is presented. Second,
it has only n-1 vector controllers, where n is the number of
equation dimensions, but it produces a globally and exponen-
tially asymptotic synchronization. Third, two chaotic systems
are synchronized with different structure and dimension.
Finally, it is easier to achieve synchronization with a satura-
tion function.

© 2012 American Institute of Physics
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The rest of the paper is organized as follows: Section 11
introduces the integer-order chaotic systems and a class of
fractional-order chaotic system. Section III proposes a com-
pensation controller and vector controller based on sliding
mode control theory. Furthermore, the controller design
scheme and the stability analysis of the closed loop system
are included in this section. Section IV provides results of
numerical simulations and Section V gives brief comments
and conclusions.

Il. SYSTEM DESCRIPTION

Consider the n-dimensional, integer-order chaotic drive
system

d?x
’d =f(x), (D

where x € R",f : R" — R" are differentiable functions.
Then consider the n-dimensional, fractional-order cha-
otic response system

dqy,'
—a = 0 =)
; 2
L —40)
Q- 8

where y € R", g : R"! — R""! are differentiable functions.
The dimensions ¢ = (¢1, ¢2, ...,q,,)T(O < ¢ <1) may be
equal or not, and the response system (2) is an integer-order
system if ¢; = 1(i € [1, n]). The constant « is positive.

lll. PROBLEM FORMULATION AND CONTROL DESIGN

System (1) represents the drive system, and the control-
ler u(f) € R" is added into the response system (2) according
to

dly
T = g0) +ult) @)

We define the synchronization errors as e = y — x. The aim
is to choose suitable control signals u(f) € R" such that the
states of the master and response systems are synchronized

(i.e., lim,_. |le]] = 0, where || - || is the Euclidean norm).
Now let the controller u(r) be
u(t) = i (1) + ua (1), @

where uy(f) € R""! is a vector control function that will be
designed later The u;(r) € R" is a compensation controller,
and u; = dtq g(x). Using Eq. (4), the response system (3)
can be rewritten as

die

= 80) + % — g 41— T = 50) -

a g(x) + ua.

(&)

To control the chaotic systems easily, the modified compen-
sation controller u; can be represented as
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dix
m=—g—80r—e (6)
and the modified error dynamics (5) can be represented as
die

a

where h(e,y) = g(y) — g(y —e).
In order to make the controller u, effective, we assume

h(e,y) + uz, )

B Arer +fi(er,e2,)
h(e’y) - <A2e2 —|—f21(61,€2,)’) +f22(elae27y)>’ &

where fi(e1,e2,y) ER™ (1<m<n), fri(e1,e2,y) ER"™™, and
Foa(er,enny) ER™: AL ER™™ and Ay RO-MX(-m) ape
constant real matrixes; ¢; = (e,,, ...,etm)T;ez = (e, ,...,e,m,,)T

Which lim fo1(e1, €2, y) = 0. )
e —

Two steps are required to design a sliding mode controller.
First, we construct a sliding surface that represents a desired
system dynamic. Then, we develop a switching control law
such that a sliding mode exists on every point of the sliding
surface, and any states outside the surface are driven to reach
the surface in a finite time.* As a choice for the sliding sur-
face, we take

—-q
‘q . (10)

where r € [1,n],r & (i,j), and ky, k, (p € [2,n — 1]) is a pos-
itive constant vector and k; # a. For the sliding mode
method, the sliding surface and its derivative must satisfy

s(r)=0, s(r)=0. (11
Consider
§(t) = D' (Ds(t)) = 0= Ds(t) =0 (12)

from which it follows that

d? a4
ﬁsj = ﬁej + (klej + aei) =0
a4 d? 13
ﬁS’ dqe,—l—ker—O (13)
and
41
i alej — e;)
44
ar ¥ = ~thetae) (14)
44
ﬁer = —k,,er
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FIG. 1. Chaotic attractors for the
integer-order T chaotic system and the
fractional-order Chen’s chaotic system.

a. Integer-order T chaotic system. b. Fractional-order Chen’s chaotic system

In accordance with active control design procedure, the nonlin- Now, according to Eq. (14), we can define

ear part of the error dynamics is eliminated by the following e; e,
choice of the input vector: e = e ande; =  |. So the system (14) can be

Q. rewritten as follows:
dly;
o a()’j _ y’,) + uy;

dly; a P
W—g()’)+uu+uzj ) (15) ﬁel =Aje; +filer,er,y) {6
dqy dq 9

T g(y) +uy + up, prich Ases + for(er,e2,y) + fa(er, e2,y)

€4

0 5 10 15 20 25 30 35 40
Time t/(sec.)

N5 | | FIG. 2. Synchronization errors between the
0 integer-order T chaotic system and the fractional-

05 i order Chen’s chaotic system (e; = x, — Xy,
1k o € =Yyr —Yd,€3 =Zr — Zd).

0 5 10 15 20 25 30 35 40
Time t/(sec.)

0 5 10 15 20 25 30 35 40

Time t/(sec.)
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0 o
where fi(e1,e2,y) = <h<(e y)) and A = [_Z —6;61}’
i€,

—k, 0 0
A2 _ 0 —Rr41 e 0
0 0 —Rn—1
Now, system (16) can be described as follows:
44
prihe a(ej — e;)
44
6= —(kiej + ae;) 3 (17)
41
i —Azer + far(e1,e2,y)

So, according to Eq. (17), the controller is designed as
follows:

wyj = —hi(e,y) — (kiej + ae;) — nsat(sj/h)
Uy = _f22(eay) - kl’er - r]sat(sr/h) ! (18)

where 7 is the gain of the controller and
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sign(S), S| > h

, 19
S/h, IS <h (19

sat(S/h) = {

with / a positive constant that must be small for a good
approximation.

According to function (2) and controls (6) and (18), the
error is given by

44
ﬁei =a(e; — ¢)

44

prihe —(kiej + ae;) —nsat(s;/h) (20)
44

d_ﬂez = —Ases + far(e1, e2,y) — nSAT

where SAT = (sat(s,/h), ..., sat(s,_1 /h))".

Theorem. Consider the error function (17). If A; is a
stable matrix, the error between response system (3) and
drive system (1) can be determined.

Proof. According to functions (2), (6), (18), and (20), A,
is given by the matrix

Ay = [_“ a } Q1)

-20 20

-20 20

b. Fractional-order hyperchaotic system based on Chen’s system.

FIG. 3. Chaotic attractors of an integer-order hyperchaotic system and a fractional-order hyperchaotic system based on Chen’s system.

Downloaded 29 May 2012 to 128.104.1.219. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



023130-5 Chen et al. Chaos 22, 023130 (2012)

s i s si s die
Thus, the eigenvalues are easily got as d_; — Ae — sat(s/h). 24)

11
—sa+ski - V30 + 20k + )

I

i

1 1 22) According to Egs. (18), (20), (17), and (24), A is given by
Jj = —za+ ki /-3 + 2aki + &)

2 2 _ _
—a a 0 0

0

When k; #a, all eigenvalues of matrix A; satisfy —-a -k 0 .. 0 .. O
Re(4) < 0, which implies |arg/i| > % > 4. According to the 0 0 -k .. 0 .. 0
stability theory of fractional-order systems,”*>* the equilib- A= : : : 0 ... 0 |. @5
rium point ¢ = 0 in function (20) is asymptotically stable 0 0 0 0 —k .. 0

lim ¢; = 0. (23) : : ; : : ;
e 0 0 0 0 0 .. —kp]
According to Egs. (9) and (23), Eq. (20) can be rewritten as
follows: And the eigenvalues are

0.1 | -

01 g
02 g
03 g
04 | g
05

€4
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Time t/(sec.)

0.1
0.05 E

-0.05 g
01 g
~ 015 | 4

-0.25 -
-0.3 | -
-0.35 s
-0.4

0 5 10 15 20 25 30 35 40 FIG. 4. Synchronization errors between an
Time t/(sec.) integer-order hyperchaotic system based on
the Lorenz system and a fractional-order

0.1 hyperchaotic system based on Chen’s system
0.05 + - (e1 =X —Xg,€2 =Y —Ya,€3 =Zr — Zg, €4
=W, — Wg).
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1
Ji= =5 (a+ ki + /-3¢ — 2ak, — K3)

2
1

b= —plath - \/—3a2—2ak1 ). (26

)vr = _kr

Thus, all eigenvalues of matrix A satisfy Re(1) < 0, which
implies |argZ| > % > %% According to the stability theory of
fractional-order systems,’®* the equilibrium point e = 0 in
function (24) is asymptotically stable

lim e = lim (y —x) =0. 27)

t—+00 t—+400

IV. NUMERICAL SIMULATION

This section of the paper presents three illustrative
examples to verify and demonstrate the effectiveness of the
proposed control scheme. In case I, a three-dimensional inte-
ger-order system is synchronized with a fractional-order sys-
tem having a different structure. In case II, a four-
dimensional integer-order system is synchronized with a
fractional-order system. In case III, a three-dimensional inte-
ger-order system is synchronized with a four-dimensional
fractional-order system. The numerical simulation results
were carried out in MATLAB using the Caputo version and a
predictor-corrector algorithm for fractional-order differential
equations, which is the generalization of Adams-Bashforth-
Moulton one.**~**

-50 -20
yd Xd

a. Integer-order Lorenz chaotic system.

20
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Case 1. Synchronization between a fractional-order
Chen chaotic system and an integer-order T chaotic system
The integer-order T chaotic system™ is described by

dx

7: = a(yqs — Xq)

d

% = (c—a)xg —axyzg - (28)
dz

7;1 = —bzy + XqVaq

The system exhibits chaotic behavior for the parameters (a, b, ¢)
= (2.1, 0.6, 30) with initial conditions [x,, 4 z41" =[10, 5, 25]"
and a chaotic attractor as shown in Fig. 1(a).

The fractional-order Chen chaotic system>® is

d? x,
d_tx =a(yr —x,)
dty,
d_ty = (c —a)x — Xz +cy, (29)
a?z,
dtz = —bz, + x,yr

and exhibits chaotic behavior for ¢,;=¢,»=¢,3=0.90
and (a, b, ¢)=(35, 3, 28) with initial conditions [x,, y,, z]"
=12, 3, 7]" and a chaotic attractor as shown in Fig. 1(b).

Here, the controller parameters K; =K, =3 and 1 = 1 are
chosen, and the eigenvalues (41, /2, 43) = (—22.5 + 32.6917i,
—22.5 —32.6917i, —10) are located in the stable region. As
described above, we can obtain the controller u(r) for the
response systems (6) and (18) as follows:

20

FIG. 5. Chaotic attractors of the integer-
order Lorenz chaotic system and a
fractional-order hyperchaotic system based
on Chen’s system.

b. Fractional-order hyperchaotic system based on Chen’s system
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(6))] Compensation controller
un = 2.1(ya — xa) = 35[0y, — e2) — (- — e1)]
upp =279x; — 2.1x4zq + 7(x, — €1) + (x, — e1)(z, — €3)
~28(y, — e2) '
upz = —0.6z4 + xg90 — (X, —e1)(yr —e2) +3(z, — e3)
(30)

(i1)  Vector controller

un =Tey —eje3 + x.e3 +z,ey — 28ey — (kjex + aey)
—n sat(sy/h)
uz3 = 3es — kaez — nsat(sz/h)

(31)

Chaos 22, 023130 (2012)

The synchronization errors are shown in Fig. 2, which
demonstrates that the proposed method is successful in syn-
chronizing the two systems.

Case II: Synchronization between a fractional-order
hyperchaotic system based on Chen’s system and an integer-
order four-dimensional chaotic system.

The integer-order four-dimensional chaotic system®’ is

given by

€4

0 5 10 15 20 25 30
Time t/(sec.)

35

€,
ON MO

0 5 10 15 20 25 30
Time t/(sec.)

35

€3
o N E-N (o)} (o] o

-2

0 5 10 15 20 25 30
Time t/(sec.)

20

35

40

€4

-5

0 5 10 15 20 25 30
Time t/(sec.)

35

40

dxd ( )

—- = alYa — Xa

ar Y

d

% = bxd — 20ded + wy

! (32)

dZd 20

_—= IXaYa — CZg

dr ¥

dw

— =20 dZd — de

dt Y
FIG. 6. Synchronization errors between the
integer-order Lorenz chaotic system and a
fractional-order hyperchaotic system based on
Chen’s system (e} =X, —Xg,€2 =Y, — Ya,
3 =Zr —Zd,€4 =Wp — Wd)-
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This system exhibits chaotic behavior for the parameters
(a, b, ¢, d)y=(10, 40, 2.5, 5) with initial conditions [x;, Y
24y waT=10.5, 1.4, 1.2, 0.7]7 and a chaotic attractor as
shown in Fig. 3(a).

The fractional-order hyperchaotic system based on
Chen’s system™ is

dquxd
. a(yr — xr)
d dr2
d)t)‘?’z =dx, — X2 + ¢y, — Wy
(33)
dqrzzd
dris =X,y — bz,
ddriw
dtqrA Xr + k

This system exhibits chaos for ¢,; =¢,>=¢,3=0.90 and
(a, b, c, d, k)= (36, 3, 28, —16, 0.5) with initial conditions
[x ¥y 2, w,.]T =10, 1.0, 0.9, 1.7]T and a chaotic attractor as
shown in Fig. 3(b).

The controller parameters K; =K, =Kz=3 and n =1
are chosen, and the eigenvalues (11,42, /43,44) = (=23 +
33.5708i, —23 — 33.5708i, —10, —10) are located in the sta-
ble region. As before, we can obtain the controller u(r) for
the response systems (6) and (18) as follows:

) Compensation controller

urr = 10(yg — xa) — 36[(yr — €2) — (x, — e1)]
upp = 40x; — 20x4z4 + wa + 16(x, — 1)
+ (v —e1)(zr —e3) —28(y, — e2) + (Wr —ea) .
uiz = 20xdyd — 2.52,1 — (x, — el)(y, - 62) + 3(Zr — 63)
urg =20y4zq4 — 5wy — (x, —e1) — 0.5
(34)

(i1)  Vector controller

Uy = ey + xre3 + zye1 —28ex + eq — (kiex + aey)
—nsat(sy /h)
ur3 = 3es — kaez — nsat(sy/h)
Uy = —kzeq — nsat(sz/h)
(35)

The synchronization errors are shown in Fig. 4, which
demonstrates that the proposed method is successful in syn-
chronizing the two systems.

Case III. Synchronization between a fractional-order
hyperchaotic system based on Chen’s system and an integer-
order Lorenz chaotic system.

The Lorenz chaotic system®” is described by

B4 aya )

ar Yd d

dstd =rXg — Yqg — X4Zd (36)
dz,

d_td = —bzy + X4Ya

Chaos 22, 023130 (2012)

and exhibits chaotic behavior for the parameters (a, b, 1)
= (10, 8/3, 28) with initial conditions [x, Y4, zd,]T =[1.5,0.8,
1.3]" and a chaotic attractor as shown in Fig. 5(a).

The fractional-order hyperchaotic system based on
Chen’s system® is

dquxd

ar a(yr — xr)

d qr2

d);l‘;rz =dx, — X,z + ¢y, — Wy

diz, 37
drin XrYr bz,

dar

a ek

and exhibits chaotic behavior for ¢,; =¢,> =¢,3=0.90 and
(a, b, c, d, k)y=(36, 3, 28, —16, 0.5) with initial conditions
[Xs Vs Zps wr]T: [20, 13, 9, 18]T and a chaotic attractor as
shown in Fig. 5(b).

The controller parameters K| =K, =K3;=7 and n =1
are chosen, and the eigenvalues (41,/,43,44) = (—21.5
+32.9507i, -21.5 — 32.9507i,—7,—7) are located in the
stable region. As mentioned above, we can obtain the con-
troller u(z) for the response systems (6) and (18) as follows:

) Compensation controller

unt = 10(ya — xa) — 36[(y- — e2) — (x, —e1)]
Uiy =28x5 — ya — Xqza + 16(x, —e1)

+ (xr —e1)(zr —e3) —28(yr — €2)

8
3 = —37% + %24 = (% = &1) (O —€3) + B[z — €3)

uyg = —(x, —e;) —0.5
(38)

(ii)  Vector controller

Uy = ey + xre3 + zye1 — 28ex + eq — (kiea + aey)
—nsat(sy /h)
U3 = 3e3 — kaez — nsat(sy/h)
Uy = —kzeq — nsat(s3/h)
(39)

The synchronization errors are shown in Fig. 6, which
demonstrates that the proposed method is successful in syn-
chronizing the two systems.

V. CONCLUSION AND DISCUSSION

In this paper, the synchronization between fractional-
order chaotic systems and integer-order chaotic systems was
achieved based on sliding mode control. The proposed syn-
chronization approach is theoretically rigorous and perva-
sive. Furthermore, three typical examples were shown: the
synchronization (1) between different three-dimensional cha-
otic systems, (2) between different four-dimensional chaotic
systems, and (3) between a three-dimensional chaotic system

Downloaded 29 May 2012 to 128.104.1.219. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



023130-9 Chen et al.

and a four-dimensional chaotic system. Numerical results
using the Caputo version and a predictor-corrector algorithm
for fractional-order differential equations illustrated the
effectiveness of the proposed scheme. These theoretical and
numerical results provide a bridge between integer-order
chaotic system and fractional-order chaotic systems and lend
theoretical support for fractional-order chaotic systems.

More and better methods for the synchronization between
integer-order chaotic systems and fractional-order chaotic sys-
tems should be studied. Moreover, this knowledge should be
applied in engineering to fields such as communications and
that will be a subject of our future work.
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