
ISSN 1063�7761, Journal of Experimental and Theoretical Physics, 2012, Vol. 115, No. 2, pp. 356–360. © Pleiades Publishing, Inc., 2012.

356

1 1. INTRODUCTION

Generally, the dynamics of a dynamical system is
interesting if it has a closed, bounded, and hyperbolic
attractor. In fact, the coexistence of highly compli�
cated long�term behavior, sensitive dependence on the
initial conditions, and the overall stability of the orbit
structure are the most important features resulting
from hyperbolicity. In strange attractors of the hyper�
bolic type, all orbits in phase space are of the saddle
type, and the invariant sets of trajectories approach the
original one in forward or backward time directions,
i.e., the stable and unstable manifolds intersect trans�
versally.

The hyperbolic theory of dynamical systems is
widely used for characterizing chaotic behavior of
realistic nonlinear systems, but it has never been
applied to any physical process with continuous�time
dynamics. Generally, best�known physical systems do
not belong to the class of systems with hyperbolic
attractors [1, 2]. Because hyperbolic strange attractors
are robust (structurally stable) [3], it is interesting to
find physical examples of hyperbolic chaos, i.e., noise
generators and transmitters in chaos�based communi�
cations. Recently, some continuous�time dynamical
systems were constructed and confirmed to be hyper�
bolic. The proof was given based on the corresponding
Poincaré map [4]. The method most used for such a

1  The article is published in the original.

construction involves coupled self�sustained oscilla�
tors with alternating excitation and invokes the
numerical analysis to visualize diagrams illustrating
the phase transfer [4–12], where an additional cou�
pling allows transfering the phases simultaneously
from one partner to the other in order to obtain the
desired chaotic map on a circle or a torus (robust
hyperbolic behavior). We note that some of the con�
structed hyperbolic systems have six variables [9] or
eight variables [7].

Realistic examples of physical systems with hyper�
bolic chaotic attractors are of considerable signifi�
cance because they open the possibility for real appli�
cations of the hyperbolic theory of dynamical systems.
As far as we know, all examples of chaotic hyperbolic
continuous�time systems were constructed based on
well�known discrete hyperbolic chaotic maps. In fact,
the many applications of chaos synchronization in
secure communications [3, 4, 6–23] make it much
more important to synchronize two different chaotic
systems [13–15, 17–19, 23–25]. Also, it was shown in
[26] that the frictionless motion of a mechanical sys�
tem called triple linkage can be described in terms of a
geodesic flow on a surface with everywhere negative
Gaussian curvature. In fact, this system is expected to
have a hyperbolic chaotic attractor in the presence of
friction and an appropriate feedback control law.
These two examples show the importance of the

Hyperbolification of Dynamical Systems:
The Case of Continuous�Time Systems1

Z. Elhadja and J. C. Sprottb

aDepartment of Mathematics, University of Tébessa 12002, Algeria
bDepartment of Physics, University of Wisconsin, Madison WI 53706, USA

e�mail: zeraoulia@mail.univ�tebessa.dz, zelhadj12@yahoo.fr, sprott@physics.wisc.edu
Received December 9, 2011

Abstract—We present a new method to generate chaotic hyperbolic systems. The method is based on the
knowledge of a chaotic hyperbolic system and the use of a synchronization technique. This procedure is
called hyperbolification of dynamical systems. The aim of this process is to create or enhance the hyperbo�
licity of a dynamical system. In other words, hyperbolification of dynamical systems produces chaotic hyper�
bolic (structurally stable) behaviors in a system that would not otherwise be hyperbolic. The method of hyper�
bolification can be outlined as follows. We consider a known n�dimensional hyperbolic chaotic system as a
drive system and another n�dimensional system as the response system plus a feedback control function to be
determined in accordance with a specific synchronization criterion. We then consider the error system and
apply a synchronization method, and find sufficient conditions for the errors to converge to zero and hence
the synchronization between the two systems to be established. This means that we construct a 2n�dimen�
sional continuous�time system that displays a robust hyperbolic chaotic attractor. An illustrative example is
given to show the effectiveness of the proposed hyperbolification method.

DOI: 10.1134/S1063776112070059

STATISTICAL, NONLINEAR,
AND SOFT MATTER PHYSICS



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 115  No. 2  2012

HYPERBOLIFICATION OF DYNAMICAL SYSTEMS 357

hyperbolic nature of dynamical systems modeling
real�world phenomena.

In this paper, we present a new method for such a
construction based on a known chaotic hyperbolic
continuous�time system and a synchronization
method, namely, the active control method presented
in [15, 17, 23, 25]. An illustrative example is given to
show the effectiveness of the proposed hyperbolifica�
tion method.

2. HYPERBOLIFICATION
OF DYNAMICAL SYSTEMS

In this section, we present our method for hyper�
bolification of continuous�time dynamical systems.
This is a partial answer to a question posed in [27].
Indeed, let

be a known hyperbolic chaotic system regarded as a
drive system, where

Let

be the response system, where U(t) is a feedback con�
trol function (in fact, the function U(t) depends on the
time t and the dynamical variables x1 and x2) to be
determined in accordance with a specific synchroni�
zation criterion. Let the error states be

We then consider the error system and apply the syn�
chronization method, and then find sufficient condi�
tions for which the errors  converge to zero as
t  ∞, and hence synchronization between the two
systems is achieved. This means that we construct a
2n�dimensional continuous�time system with a robust
hyperbolic chaotic attractor.

The synchronization criterion used in this paper is
the active control method presented in [15, 17, 23, 25].
We also use a 4�dimensional continuous�time dynam�
ical system as a drive system. This system corresponds
to the 3�dimensional Smale–Williams attractor, the
composed equations studied in [4] and given by
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which were first introduced in [8]. System (1) is a non�
autonomous nonlinear system consisting of two cou�
pled van der Pol oscillators whose frequencies are ω0

and 2ω0, where h1, 2, A1, 2, ε1, 2, and N are real con�
stants. System (1) exhibits a Smale–Williams�type
strange attractor when it is represented by a 4�dimen�
sional stroboscopic Poincare map. In this case, the
hyperbolicity is verified numerically by analyzing the
distribution of the angle ϕ between the stable and
unstable subspaces of manifolds of the resulting cha�
otic invariant set. System (1) has been constructed as a
laboratory device [4], and experimental and numerical
solutions were found.

The response system is given by the general equa�
tion

(2)

where fi(x2, u2, y2, v2), 1 ≤ i ≤ 4, are smooth functions.
We assume that system (2) without the active control
functions z1(t), z2(t), z3(t), and z4(t) displays bounded
solutions. The required smoothness of system (2)
means that there is a derivative at every point. The
advantages of smoothness can be seen in the fact that
the local picture can be given by a derivative. Also in
the hyperbolic case, the concept of a tangent space,
which splits into expanding and contracting direc�
tions, requires smoothness of the system under con�
sideration. The functions z1(t), z2(t), z3(t), and z4(t) are
the active control functions to be determined. Let the
error states be

Using the active control method, for the active control
function

we obtain
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where α, β, γ, and δ are real parameters to be chosen
such that the error states ei, 1 ≤ i ≤ 4, converge to zero,
and the response system (2) becomes

(3)
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We note that Eq. (3) is a 9�dimensional dynamical
system (where t is a variable) relating solutions of the
drive system (1) and the response system (2). With the
particular choice of the functions z1(t), z2(t), z3(t), and
z4(t), the closed loop system is given by

whose eigenvalues are h1 + α, β, h2 + γ, and δ. Then,
for any set of parameters α, β, γ, and δ such that

the linear system for, ei, 1 ≤ i ≤ 4, is asymptotically
stable. This choice leads to the error states e1, e2, e3,
and e4 converging to zero as t  ∞, and hence the
synchronization between the general system (3) and
the chaotic hyperbolic system (1) is achieved. For
the parameters h1, 2, A1, 2, ε1, 2, and N for which sys�
tem (1) displays robust (hyperbolic) chaos (for
example N = 8, A1 = 1.5, A2 = 6, ε1, 2 = 0.1, and
h1, 2 = 0 as shown in [4]), it drives another chaotic
attractor resulting from the general system (3),
which is also robust hyperbolic because the system
error between (1) and (3) converges to zero for large
time t.
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Fig. 1. The chaotic attractor of the drive system (1) for N =
8, A1 = 1.5, A2 = 6, ε1, 2 = 0.1, and h1, 2 = 0.
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Fig. 2. The chaotic attractor of the response system (4) for
σ = 10, b = 8/3, s = 1619, and r = 2289.
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3. NUMERICAL SIMULATION

In this section, we take the Lorenz–Stenflo system
given by

(4)

as the response system and system (1) as the drive sys�
tem. Here σ, r, b, s ∈ � are the bifurcation parameters
of system (4). The Lorenz–Stenflo system (4)
describes finite�amplitude, low�frequency, short�
wavelength, acoustic gravity waves in a rotational sys�
tem [28]. The drive system (1) displays robust (hyper�
bolic) chaos for N = 8, A1 = 1.5, A2 = 6, ε1, 2 = 0.1, and
h1, 2 = 0 [4]. Its attractor is shown in Fig. 1, and the
response system (4) displays chaos for σ = 10, b = 8/3,
s = 1619, r = 2289, with an attractor as shown in Fig. 2.

For the active control function
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defined above, we choose α, β, γ, and δ as

The dynamics of synchronization errors states ei(t),
1 ≤ i ≤ 4 for systems (1) and (4) are shown in Fig. 3.
Finally, it is clear that the synchronization error con�
verges to zero, and therefore synchronization between
the two systems (1) and (4) is achieved. The solution of
the response system (3) is shown in Fig. 4 (the largest
Lyapunov exponent of this system is about 0.085). It
seems that the dynamics of system (3) is inspired by
the one in system (1). This fact is exactly the main
meaning of the claim that system (1) drives system (4).

We note that it is possible to use other synchroniza�
tion methods such as those in [13–15, 17–19, 23–25]
or other known hyperbolic systems such as those in
[4–12] to generate chaotic attractors with a hyperbolic
structure just like system (1).

Finally, our proposed method for hyperbolification
of continuous�time dynamical systems opens new
directions for studying the nature of chaos in these sys�
tems and improves possibilities for robust real�world
applications of hyperbolic systems, which are struc�
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Fig. 3. The dynamics of synchronization errors states ei(t), 1 ≤ i ≤ 4 for systems (1) and (4).
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turally stable. Structural stability means the robustness
of solutions of the governing dynamical equations if
the changes are sufficiently small.

4. CONCLUSIONS

We have presented a new method to generate cha�
otic hyperbolic systems based on the knowledge of a
chaotic hyperbolic system and the use of a synchroni�
zation technique. This process creates hyperbolicity in
a dynamical system and generates structurally stable
chaotic attractors. An illustrative example is given to
show the effectiveness of the proposed hyperbolifica�
tion method.
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