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In this letter, we will show the existence of invariant sets called universal basins of
attraction for typical nonlinear high-dimensional dynamical systems such as randomly sampled
high-dimensional vector fields (ODEs) or maps. The method of analysis is based on the definition
of an equivalence class between systems with the same number of neurons, the same number of
time lags, and the same upper bound for one family of bifurcation parameters.
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1. Introduction

The basin of attraction of an attractor of a dynam-
ical system is the set of initial conditions leading
to long-time behavior that approaches the attrac-
tor. Determining rigorously the basin of attraction
(or a part of this basin) of a dynamical system is a
very difficult problem. In this letter, we show the
existence of basins of attraction for typical non-
linear high-dimensional dynamical systems based
on their number of neurons, number of time lags,
and the upper bound for one family of bifurcation
parameters.

It was shown in [Albers & Sprott, 2006] that
the use of approximation theorems of [Hornik et al.,
1990] and time-series embedding of [Sauer et al.,
1991] established an equivalence between single-
layer recurrent neural networks of the form [Albers
et al., 2006]

Fd,n,β : xt = β0 +
n∑

i=1

βi tanh s


ωi0 +

d∑
j=1

ωijxt−j




(1)

and general dynamical systems. Indeed, the so-
called universal function approximators define a
class of dynamical systems. This class is universal
in two equivalent senses: (a) In the limit that these
systems have infinitely many parameters they are
dense in Cr on compacta as shown in [Hornik et al.,
1990]. (b) These types of systems can approximate
arbitrarily closely any Cr mapping and its deriva-
tives on compacta. These systems are single-layer
recurrent neural networks of the form (1). More
detailed information about the procedure of approx-
imation can be found in [Hornik et al., 1990]. In
this work, we give some conditions confirming that
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multilayer feedforward networks with a single
hidden layer and an appropriately smooth hidden
layer activation function are capable of providing a
good and accurate approximation to an arbitrary
function (including certain piecewise differentiable
functions) and its derivatives. This procedure
requires simultaneous approximation of a function
and its derivatives.

In fact, models of the form (1) are maps from
R

d to R. Here n is the number of neurons, d is the
number of time lags, which determines the system’s
input embedding dimension, and s is a scaling fac-
tor for the connection weights ωij. The initial con-
dition is (x1, x2, . . . , xd), and the state at time t
is (xt, xt+1, . . . , xt+d−1). In [Albers et al., 2006] the
k = n(d + 2) + 1-dimensional parameter space was
taken as follows: (i) βi ∈ [0, 1] is uniformly dis-
tributed and rescaled to satisfy

∑n
i=1 β2

i = n, (ii)
ωij is normally distributed with zero mean and unit
variance, and (iii) the initial condition xj ∈ [−1, 1]
is uniform.

2. Universal Basins of Attraction

In this section, we will use the term general to
indicate a discrete dynamical system of the form
xt+1 = T (xt) and the word universal to describe a
type of basin of attraction of these systems.

Let T : U ⊂ R
d → R be an arbitrary mapping

defining a discrete dynamical system of the form
xt+1 = T (xt). Here T can be a discontinuous map
and can be a Cr diffeomorphism, etc. It is well
known that the set of points in the space of sys-
tem variables such that initial conditions chosen in
this set dynamically evolve to a particular attrac-
tor is called the basin of attraction. More gener-
ally, a subset S of the domain U of a mapping T
is an invariant set under the mapping when x ∈ S
implies that T (x) ∈ S. The basic topological struc-
ture of a basin of attraction or an invariant set
can vary greatly from system to system. Generally,
the shape or the structure of a basin of attrac-
tion is not well known for any system. For exam-
ple, a basin of attraction can be an interval, a ball,
the union of intervals, or the union of balls, and
the basin boundary can be a smooth curve. For
some systems, the shape of the basin of attraction
is very complicated, and the basin boundary can
be a fractal set. There are numerous examples of
this situation in the current literature. See [McDon-
ald et al., 1985] for some details. The methods

used for finding these basins are essentially based
on numerical calculations. Finding a preassigned
structure of a basin of attraction or a part of it
for a system is very hard even for the simplest
systems, and certainly becomes more difficult for
high-dimensional systems.

The main issue addressed in this letter is the
existence of some simple structure for these basins
of attractions or parts of them for typical high-
dimensional systems. This question is very compli-
cated, and its solution is not immediately evident.

In this letter, we will show the existence of a
universal basin of attraction Γd,n,β for typical non-
linear high-dimensional dynamical systems such as
randomly sampled high-dimensional vector fields
(ODEs) or maps.

For this purpose, consider the set Ωn,d,α as
the space of single-layer recurrent neural networks
of the form (1) with n neurons, d time lags, and
α = (βi)i ∈ [0, 1] as bifurcation parameters. We
define an equivalence relation in order to make a
partition of the set Ωn,d,β in the form of several
equivalence classes. Two elements of Ωn,d,α are con-
sidered equivalent if and only if they are elements of
the same class. In this way, every element Fd,n,α ∈
Ωn,d,α is a member of one and only one class. The
intersection of any two different classes is empty,
and the union of all the classes equals the original
set Ωn,d,α. Here all operations can be defined on
the equivalence classes using representatives from
each equivalence class. Furthermore, the expected
results of these operations are independent of the
selected class representatives. Hence the word uni-
versal used here implies the existence of a common
set as the basin of attraction of all the elements of
one equivalence class. As we show below, this basin
of attraction is an open ball, depending on prop-
erties of the considered recurrent neural networks
such as the number of neurons, time lags, and bifur-
cation parameters.

By using this idea, we will show that the basin
of attraction of an element Fd,n,α ∈ Ωn,d,α is an
equivalence class between systems with the same
number of neurons n, the same number of time
lags d, and the same upper bound for the family
of bifurcation parameters βi ∈ [0, 1]. Indeed, let
Fd,n,α ∈ Ωn,d,α (with its basin of attraction Γd,n,α)
and Gd′,n′,α′ be two single-layer recurrent neural
networks of the form (1). Define the equivalence
relation � as follows:

Fd,n,α�Gd′,n′,α′ ⇔ d = d′, n = n′, α = α′.
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This relation is reflexive, symmetric, and transi-
tive. Thus an equivalence class of the relation �
is given by

Fd,n,α = {Gd′,n′,α′ : R
d → R : Fd,n,α�Gd′,n′,α′}

= {Gd,n,α : R
d → R}. (2)

Thus the set Γd,n,α is the basin of attraction for
any map Gd,n,α : R

d → R equivalent to Fd,n,α with
respect to �. We remark that the equivalence class
Fd,n,α does not depend on the values of the scal-
ing factor s and the connection weights ωij. Hence
these properties further justify the name universal
used here for the required basins of attraction.

Now consider the possible shapes of these
invariant sets. Indeed, since tanh x = e2x−1

e2x+1 , then

|tanh x| =
∣∣ e2x−1
e2x+1

∣∣ ≤ 1. Hence |xt| ≤
∑n

i=0 |βi| ≤
(n+1)β, where β = max{βi, i = 0, . . . , n}. If we set
Xt = (xt, xt+1, . . . , xt+d−1), then ‖Xt‖1 ≤ d(n+1)β
(here ‖Xt‖1 =

∑d−1
i=0 |xt+i|). It is remarkable that

the region Γd,n,β defined by

Γd,n,β = {x0 ∈ R
d : ‖x0‖1 < d(n + 1)β} (3)

is an invariant set for system (1) since by induc-
tion, if we assume that ‖Xt‖1 ≤ d(n + 1)β, then
‖Xt+1‖1 ≤ d(n + 1)β. Indeed, we have |xt+1| ≤∑n

i=0 |βi| ≤ (n + 1)β, then |xt+1| + |xt+2| + · · · +
|xt+d| ≤ d(n + 1)β, that is ‖Xt+1‖1 ≤ d(n + 1)β.
Thus the set Γd,n,β is the basin of attraction of
system (1).

As noted in the introduction, since networks of
the form (1) are universal function approximators,
then the set Γd,n,β is still the basin of attraction of
typical nonlinear high-dimensional dynamical sys-
tems such as randomly sampled high-dimensional
vector fields (ODEs) or maps.

Generally, it was supposed that the size of the
basin of attraction is some kind of measure of how
likely an attractor is to appear in the system that it
is modeling. In real-world systems, the parameters
are not usually constant, and so the existence of a
nearby basin of attraction could signal the likeli-
hood of the dynamics flipping to another attractor.
In other words, the so-called basin boundaries arise
in dissipative dynamical systems when two or more
attractors are present. In this case, each attractor
has its own basin of initial conditions. The sets
that separate different basins are called the basin
boundaries. In some cases the basin boundary is
smooth, and in other cases the basin boundaries can

have very complicated fractal structure and create
an additional impediment to predicting long-term
behavior. See [Zeraoulia & Sprott, 2008a] for more
details and examples.

In the case where the parameters are con-
stant, noise or other extrinsic factors could bump
the dynamics into a different basin. Basically, the
size of the basin of attraction is an indication of
how robust the attractor is. Here the robustness
means the degree of resistance of that attractor to
small changes in initial conditions and other quan-
tities related to that system. Generally, an attrac-
tor lies within its basin of attraction. In particular,
chaotic attractors tend to lie close to their basin
boundary somewhere in the state space, i.e. chaos
tends to occur just before attractors collide with
their basin boundary. For explanation, we begin
by saying that chaotic dynamical systems display
two kinds of chaotic attractors: (a) fragile chaos,
in which case the attractors disappear with per-
turbations of a parameter or coexist with other
attractors, and (b) robust chaos, which is defined
by the absence of periodic windows and coexisting
attractors in some neighborhood of the parameter
space. The existence of these windows means that
small changes of the parameters would destroy the
chaos, implying the fragility of this type of chaos.
See [Zeraoulia & Sprott, 2008b] for more details and
mathematical examples.

In this letter, we have proved that systems of
the form (1) have basins of attraction described by
Eq. (3). These basins have a simple geometry. The
case where the basin geometry is more complex in
geometry is very interesting, in view of theoreti-
cal studies and even real world applications. How-
ever, there are only a few examples of this situation
obtained by numerical simulation. See [McDonald
et al., 1985; Zeraoulia & Sprott, 2008a, and refer-
ences therein]. A mathematical formulation of these
fractal basins is a very prominent open problem in
the study of dynamical systems. Some examples are
illustrated in Figs. 1–4. These figures show a plot of
a 2-D cross-section of the d-dimensional basin of
attraction (d = 2, 4, 8) with the parameters arbi-
trarily chosen to give a chaotic solution. The light
blue is the basin of the strange attractor, and the
red is the basin of some other attractor, most likely
a stable equilibrium. The strange attractor is shown
in black projected onto the plane, which explains
why it appears to cross the basin boundary. For the
case of 4-D neural net systems with two neurons,
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(a) (b)

(c)

Fig. 1. 2-D cross-sections of a 2-D basin of attraction of system (1) with four neurons.

we found 76 cases. In almost all cases, the strange
attractor is globally attracting with no other attrac-
tors. There are eight exceptions, some of which are
shown in Fig. 2. We remark that some of the basins
are apparently riddled (every point in the basin is
arbitrarily close to another basin).

As a real world application, we notice that the
notion of basin of attraction is widely used as a mea-
sure of the disturbance rejection for biped robots.

This basin is a total set of state variables from
which the walker can walk successfully as shown in
[Ning et al., 2007]. Now, if the underactuated biped
robot system is approximated with a network of the
form (1), then we can see that it has a universal
basin of attraction in the form of an open ball. It
is well known that if the size of the basin of attrac-
tion is large, then the stability of a biped robot sys-
tem is strong. There are several methods used to
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(a) (b)

(c) (d)

Fig. 2. 2-D cross-sections of a 4-D basin of attraction of system (1) with two neurons.

estimate the basin of attraction for the biped robot.
For example, the cell mapping method was proposed
in [Schwab & Wisse, 2001] to compute the basin of
attraction for the simplest walking model with point
feet and the planar model with round feet. Although
this method is effective, it is time-consuming for

multidimensional state space as shown in [Zhang
et al., 2009]. Since networks are universal function
approximators, the approach presented in this letter
can be considered as an alternate method for find-
ing basins of attraction. All we need is to make a
good approximation using networks of the form (1).
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(a) (b)

(c) (d)

Fig. 3. 2-D cross-sections of an 8-D basin of attraction of system (1) with four neurons.
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(a) (b)

Fig. 4. 2-D cross-sections of the 8-D basin of attraction of system (1) with four neurons.

3. Conclusion

In this letter, we show the existence of invari-
ant sets called universal basins of attraction for
high-dimensional dynamics. The method of anal-
ysis is based on the definition of an equivalence
class between systems with the same characteris-
tics. The relevance of this result is that the types
of invariant sets are unchanged between such sys-
tems. Hence a fundamental question is whether it is
possible to classify high-dimensional systems (or a
part of them) into equivalence classes. This question
leaves open a nontrivial problem whose solution is
not immediately evident.
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