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Is Chaos Good for Learning? 
 
J. C. Sprott1, University of Wisconsin - Madison 
 
Abstract: This paper demonstrates that an artificial neural network training on 
time-series data from the logistic map at the onset of chaos trains more 
effectively when it is weakly chaotic. This suggests that a modest amount of 
chaos in the brain in addition to the ever present random noise might be 
beneficial for learning. In such a case, human subjects might exhibit an 
increased Lyapunov exponent in their EEG recordings during the performance 
of creative tasks, suggesting a possible line of future research.  

Key Words: chaos, neural networks, training, learning, logistic map 

INTRODUCTION 

The idea that chaos is beneficial in natural systems is now widely 
accepted. For example, it was once thought that a healthy heart had a regular 
sinus rhythm, but it was discovered that perfect regularity is a pathological 
condition (Kleiger, Miller Bigger & Moss, 1987; Sará et al., 2008) and that a 
healthy heart is arguably weakly chaotic (Denton, Diamond, Helfant, Kahn, & 
Karagueuzian, 1990). Periodicity implies that the heart is not responding to its 
surroundings (Goldberger, 1996), and anesthetized subjects exhibit a decrease in 
heart rate variability (Esmaeili, Shamsollahi, Arefian, & Assareh, 2007). On the 
other hand, a fibrillating heart appears strongly chaotic and presages death. 

Weak chaos allows the exploration of a wider range of conditions while 
still retaining a degree of memory and predictability. A prey in the wild has a 
better chance of eluding a predator if its fleeing motion is chaotic, but it must 
retain some memory of what movements it has previously made and how 
successful they were (Dawkins, 1995). In this case, evolution selects for weak 
chaos since it increases the chance of survival and hence reproduction 
(Humphries & Driver, 1967). Similarly, unpredictable behavior is often 
desirable in games as a way to hide one’s intentions (Maynard Smith, 1982). 

Since the human brain is a large network of nonlinearly interacting 
neurons, it is likely to be chaotic, and such chaos is potentially beneficial. 
Presumably, too much chaos in the brain is undesirable, and such people end up 
in asylums or perhaps prison. They behave unpredictably (Lynam & Widiger, 
2001) and have impaired memory that inhibits learning. It has been shown that 
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“mental noise” as measured by variations in reaction time correlates positively 
with neuroticism (Robinson & Tamir, 2005) and that the power spectrum 
associated with reaction time can be replicated by chaos from the logistic map 
(Clayton & Frey, 1997).  

However, weak chaos might aid thinking or even be indispensable to it 
since it allows creativity and prevents one from getting stuck in a rut, endlessly 
regurgitating the same old ideas (Rolls, 2008). There is a relation between 
insanity and genius, with both types tending toward unique responses on word 
association tests, although originality is only one component of creativity 
(Eysenck, 1993). 

One might argue that computers, which mimic some features of the 
brain, are not chaotic, and thus chaos is not essential for thinking. But a 
computer exhibits no creativity and only performs repetitive tasks that it is 
programmed to do. Furthermore, it is following a program supplied by a human, 
and the program usually involves nonlinearities in the form of branching 
statements (if-then-else) or explicit mathematical nonlinearities such as x2 and 
sin x. As such, it is capable of modeling chaotic and even self-organizing 
systems, but not true creativity. 

One indication of chaos in the brain comes from 
electroencephalograms. As with heartbeats, EEG signals are nearly periodic and 
are usually called “waves,” although they do not necessarily propagate in space. 
The fluctuations are not perfectly periodic, however, and the resulting plots 
appear weakly chaotic (Babloyantz & Salazar, 1985). The oscillations are more 
nearly periodic in anaesthetized and comatose patients (Sará & Pistoia, 2010; 
Wu et al., 2011). There have even been attempts to estimate the fractal 
dimension of the apparent strange attractors and to use the results for diagnostic 
purposes (Jeong et al., 1998). 

There have been numerous studies of the correlation of EEG and other 
signals from the brain with cognitive tasks. Dietrich and Kanso (2010) review 
72 such experiments on creativity and insight in 63 articles, and the results are at 
best unpersuasive and at worst contradictory. Some workers reported an increase 
in amplitude and spatial coherence during the performance of creative tasks 
while others reported the opposite. Significantly, none of these studies appear to 
have recorded standard measures of chaoticity such as Lyapunov exponent and 
fractal dimension. Typically, they only consider changes in the amplitude and 
sometimes frequency and spatial correlation over a narrow range of frequencies 
without regard to deviations from periodicity. In fact, noise is usually 
suppressed or ignored in EEG recordings. 

Prior to his death in 2005, the eminent medical physicist John R. 
Cameron often gave a popular lecture entitled “The Physics of Imagination and 
Creativity” in which he postulated that noise in the brain is responsible for one’s 
ability to imagine new things and that a combination of imagination and 
knowledge lead to creativity (Cameron, 1988). He thought there are individual 
differences in the level of such noise and its effects, causing some people to be 
more imaginative than others, and that highly imaginative individuals tend to 



 
 
 
 
 
 
 
 

NDPLS, 17(2), Chaos and Learning                             225 

 

have bad memories and vice versa. Cameron points out that medical schools 
select individuals with good memories, which benefits the patient since no one 
wants a doctor with a great imagination and a terrible memory. He further 
proposed experiments in which subjects would be exposed to randomly 
fluctuating magnetic fields while being tested for short-term memory. 

The idea that individuals have an inherent level of creativity is an old 
one. Spearman (1923) assumed that creativity is equivalent to intelligence, but 
he stimulated the work of Hargeaves (1927) who began studies of what was later 
called “divergent” and “convergent” thinking (Guilford, 1950, 1967), a termin-
ology that nicely coincides with the divergent orbits in a chaotic system and the 
convergent orbits in a stable periodic cycle. Cattell (1971) proposed a related 
terminology of “fluid” and “crystallized” intelligence, although the later is a 
misnomer since both kinds of intelligence change over one’s lifespan, with fluid 
intelligence peaking around age 30 or 40, while crystallized intelligence contin-
ues to grow until the onset of senility. Guastello, Guastello, and Hanson (2004) 
argue that creativity is a stable process that skilled individuals can turn on and 
off, and Logie (2011) claims that working memory is a measure of fluid 
intelligence. Furthermore, the many sources of noise in the brain have been 
identified (Faisal, Selen, & Wolpert, 2008) and the beneficial role of such noise 
is now widely appreciated (Rolls & Deco, 2010). 

Although Cameron did not speak much about chaos, he would probably 
have been as willing to attribute imagination and creativity to chaos as to noise. 
In fact, it is very difficult to distinguish the high-dimensional chaos that occurs 
in complex dynamical systems from noise. Some people think that most noise is 
really chaos since it is produced by classical deterministic processes. Only in the 
atomic realm does quantum mechanics postulate true randomness, and even that 
has its detractors including Einstein who insisted that “God doesn’t play dice 
with the world” (Hermanns, 1983, p. 58). 

This paper addresses the related but more modest and easily testable 
hypothesis that weak chaos is beneficial for learning in an artificial neural 
network and thus presumably also in the human brain. It has been shown that 
large artificial neural networks tend to be chaotic (Dechert, Sprott, & Albers, 
1999), and the usefulness of noise in attractor networks for retrieving an 
imprinted pattern has been demonstrated (Bar-Yam, 1997). However, the 
example given here of the benefits of chaos for training an artificial neural 
network is apparently new, simple, and especially elegant. 

TRAINING SET 

The task was to present the neural network with a single time series of 
512 points taken from successive iterates of the discrete-time logistic map 

xn+1 = Axn(1 – xn) 
 
at the accumulation point of A = 3.5699456718… where chaos onsets after any 
initial transient has decayed, and to train the network to predict each point in the 



 
 
 
 
 
 
 
226                                         NDPLS, 17(2), Sprott 

 

time series from a single previous point. A representative sequence of 32 points 
from the time series is shown in Fig. 1. In essence, the neural network is 
approximating the logistic parabola.  

 
 
Fig. 1. A representative sequence of 32 points from the training set at the onset 
of chaos.  

 

Fig. 2. Lyapunov exponent as a function of A for the logistic map, showing the 
accumulation point at A = 3.5699456718... where chaos onsets.  
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For this special value of A, the attractor is a Cantor set on the parabola 
with a fractal dimension of about 0.538 (Grassberger, 1981) and a Lyapunov 
exponent of exactly zero (Sprott, 2003). This is an example of a strange 
nonchaotic attractor (Feudel, et al., 2006). The reason for this choice is that in 
the process of training, the network should spend similar amounts of time in the 
nonchaotic (negative Lyapunov exponent) and chaotic (positive Lyapunov 
exponent) regions and visit regions where the Lyapunov exponent takes on a 
continuum of values in the vicinity of zero. Figure 2 shows how the Lyapunov 
exponent varies with A in the vicinity of the chosen value, and these regions are 
representative of the conditions encountered by the network as it approaches the 
solution. 

THE NEURAL NETWORK 

There are numerous architectures and learning rules for artificial neural 
networks (Hanson & Burr, 1990), but the single hidden layer, feedforward, 
discrete-time network chosen here is perhaps the simplest case that can exhibit 
chaotic dynamics. The network approximates each successive value xn in the 
time series by a value yn in terms of the previous value xn-1 using the formula 
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The cases considered here used N = 8 neurons with the program LagSpace 
(Maus & Sprott, 2011). 
 Of particular importance is the stochastic training method in which the 
program explores a gradually shrinking Gaussian neighborhood in ab-space 
centered on the value that gives the smallest current error in the spirit of 
simulated annealing (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 
1953). The training method uses randomness, but the states through which the 
network passes during the training are purely deterministic and are thus capable 
of exhibiting chaos. The program tries 105 combinations of a and b after which 
the error is typically e ~ 10−5 and repeats for thousands of instances of the 
training. Figure 3 shows three typical training instances. 

For each instance, the learning rate R given by 
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(the negative slope of the curve in Fig. 3) and the Lyapunov exponent λ given by 
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Fig. 3. Three typical instances of the training showing how the error e decreases 
with training trial. 
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are calculated at every 1000 trials where t is the number of the trial, which is 
proportional to the time spent training. After many weeks of training, 
approximately 2.8´106 pairs of (R, λ) values were collected, a representative one 
hundred of which during one typical instance of the training are shown in Fig. 4. 
From the figure, it is evident that the Lyapunov exponent fluctuates with 
positive and negative values and converges toward zero as the error decreases. 

As evidence that a neural network with only eight neurons is capable of 
training accurately, the smallest mean square error obtained was 4.4´10−9, for 
which the calculated Lyapunov exponent was 2.0´10−3. The slightly positive 
Lyapunov exponent is a result of its value having been calculated from a time 
series of only 512 points.  

RESULTS 

The main result of this paper is Fig. 5 which shows how the average 
learning rate varies with Lyapunov exponent in the vicinity of the exact solution 
whose Lyapunov exponent is zero. This figure was obtained by averaging the 
learning rate in each of 128 equally sized bins over the range of Lyapunov 
exponents from −0.05 to +0.05. The learning rate is about 50% greater when the 
artificial neural network is weakly chaotic (λ ~ 0.02) than when it is weakly 
periodic (λ ~ −0.02). 
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Fig. 4. Typical variation of the Lyapunov exponent during one instance of the 
training as the error decreases, showing how positive and negative regions are 
visited. 
 

  

 
 

Fig. 5. Average learning rate as a function of Lyapunov exponent in the vicinity of 
the solution at λ = 0 showing that weak chaos (positive λ) is beneficial for 
learning in this artificial neural network. 
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CONCLUSIONS 
 
While it is admittedly a stretch to conclude that this simple computer 

experiment implies that chaos is beneficial for human learning, it suggests a 
number of avenues of future research. First, it would be useful to test the 
robustness of the result by repeating the calculation with other chaotic systems, 
especially ones chosen to model neural dynamics such as the Hodgkin-Huxley 
model (Hodgkin & Huxley, 1952), models proposed by Rulkov (2002), and 
more complex models with many additional variables (Rulkov, Timofeev, & 
Bazhenov, 2004). In fact, artificial neural networks of this type are capable of 
generating high-dimensional chaotic dynamics (Albers, Sprott, & Dechert, 
1998), and thus one such network could be used to produce a time series at the 
onset of chaos, which would then be used to train a second identical network. 

A second line of research would use human subjects performing 
memory and creative tasks while their EEG signals are collected for later 
estimation of the Lyapunov exponent. The hypothesis is that the Lyapunov 
exponent would be somewhat larger during performance of the creative task, 
which could be something like drawing a picture or composing an essay than 
during the memory task, which could be something like recalling a sequence of 
numbers they had been previously shown and asked to remember. One could 
also test for individual differences in brain noise or chaos for subjects who score 
differently on standard tests such as the Torrance Test of Creative Thinking 
(Torrance, 1974), the Remote Associates Test (Mednick, 1962), or the 
Alternative Uses Test (Guilford, 1967).  

A third more invasive line of research would follow Cameron’s 
suggestion of exposing subjects to fluctuating magnetic fields while testing their 
memory and creativity. The technology for such tests already exists in the form 
of transcranial magnetic stimulation (TMS) therapy (Rossini & Rossi, 2007), 
which is regarded as safe and is used to treat neurological and psychiatric 
disorders (Slotema, Blom, Hoek, & Sommer, 2010), but typically employs only 
periodic magnetic pulses. If any effect was observed, one could then see how 
that effect depends on the character of the fluctuation, in particular its 
complexity (static, periodic, chaotic, or random) and chaoticity (Lyapunov 
exponent). A positive result could spawn an industry producing augmented 
cognition headwear marketed as “learning enhancement caps” programmed 
either to improve memory or to stimulate creativity, much as the pacemaker 
regulates the action of the heart. The placebo effect alone should ensure 
commercial success.     
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