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Abstract

Strange attractors are classified into three principal classes: hyperbolic,
Lorenz-type, and quasi-attractors. This paper discusses the possibility of finding
a rigorous mathematical model describing the three types of chaotic attractors
and the transitions among them.
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1 Introduction

A global unification of processes in nature is a very important question. There
are some known efforts toward unification of forces. The origin of this prob-
lem is the fact that interactions between objects are described with only four
fundamental forces. Thus, the possibility of describing them in terms of one
master force is under investigation since the pioneer imagination of Albert
Einstein. In the domain of differential equations, we investigate the possibility
of the same approach for unifiying different types of chaotic motions known in
the current literature.
Generally, strange attractors can be classified into three principal classes:

hyperbolic, Lorenz-type, and quasi-attractors, as described in [Anishchenko
& Strelkova, 1998, Anishchenko, et al. 1998, Mira, 1997]. The definitions,
detailed properties, and examples of these types of attractors are found in
[Zeraoulia & Sprott, 2011]. Note that several examples of these of attractors
display some properties of the other types. For example, it was shown in
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[Bykov & Shilnikov, 1989] that the bifurcation diagram of the Lorenz system
exhibits a region containing the Lorenz attractor, outside of which is a region
containing a chaotic quasi-attractor, i.e., there is a bifurcational transition to
a nonhyperbolic attractor as shown in [Anishchenko, et al. 1998]. Similar
phenomena are observed for hyperbolic and quasi-attractors. See [Zeraoulia &
Sprott, 2011] for more details.
This paper is concerned with the following problem: Is a unifying chaotic

dynamical system possible? This question speaks to the possibility of finding a
rigorous mathematical model describing the three types of chaotic attractors.
For this approach, there are three main problems: continuous-time versus
discrete-time, the dimensionality of systems, and the fact that many chaotic
systems are not modeled or at least have no rigorous description in terms of
mathematical equations. This last point is hard to analyze here, and it is the
origin of the main question studied in this paper.
For systems with known mathematical equations, we propose in this paper

an approach based on some homotopic functions and three known dynamical
systems corresponding to the three types of chaotic attractors.

2 A unified model for systems with the same
dimension

In this section, we propose a mathematical model as a unified model for maps
(continuous-time systems) having the same dimension n. Indeed, consider f, g,
and h as functions corresponding to three discrete mappings (continuous-time
systems) displaying respectively hyperbolic, Lorenz-type, and quasi-attractors.
The choice of these systems is arbitrary. The most important properties are
that they have the same dimension and each of them displays the corresponding
type of chaotic attractor, at least numerically.
The proposed systems for discrete maps and continuous-time systems are,

respectively, xk+1 = u (α) f (xk)+w (α) g (xk)+v (α)h (xk) and x0 = u (α) f (x)+
w (α) g (x) + v (α)h (x) where α ∈ [0, 1] is the unified parameter and u (α) =
2 (1− α)
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. Here we choose

that for α = 0, the unified map (resp, the unified continuous-time system) dis-
plays a hyperbolic attractor, for α = 1

2
, the map (resp, the unified continuous-

time system) displays a Lorenz-type attractor, and for α = 1, the map (resp,
the unified continuous-time system) displays a quasi-attractor, where α ∈
[0, 1]−

©
0, 1

2
, 1
ª
. Finally, the unified chaotic map (resp, the unified continuous-

time system) is chaotic with three different kinds of attractors. As an example
of the above analysis in the plane, one can choose, respectively, any vari-
ant of the Anosov torus in T2, the Lozi mapping, and the Hénon mapping.
Furthermore, it is possible to create any of these types of chaotic attractor
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at any point α ∈ [0, 1] by the same approach and by a permutation of the
functions u, v, and w. For example, to construct a Lorenz-type attractor
at a point α1 ∈ (0, 1) , one can choose the functions u, v, and w as follows:
u (α) = (1−α)(α1−α)

α1
, w (α) = α(1−α)

α1(1−α1) , and v (α) = α(α−α1)
1−α1 .

The above procedure can be generalized to any interval [a, b] either by
recopying the same steps or by using the fact that any interval [a, b] is home-
omorphic to the interval [0, 1] .

3 A unified model for systems with different
dimensions

In this section, we propose a mathematical model as a unified model for maps
(continuous-time systems) with different dimensions. Indeed, consider f, g, and
h as functions corresponding to three discrete mappings (continuous-time sys-
tems) displaying, respectively, hyperbolic, Lorenz-type, and quasi-attractors.
The respective dimensions are n,m and q. Let r (α) = [u (α)]n + [w (α)]m +
[v (α)] q ∈ N be a suitable dimension for the resulting unified system, where [z]
is the integer part of the real number z. We have r (0) = n, r (α1) = m
and r (1) = q. Consider three matrices U (α) ,W (α) , and V (α) with re-
spective dimensions r × n, r × m, and r × q. Hence the proposed systems
are xk+1 = U (α) f (xk) + W (α) g (xk) + V (α)h (xk) for discrete maps and
x0 = U (α) f (x) +W (α) g (x) + V (α)h (x) for continuous-time systems. The
matrices U (α) ,W (α) , and V (α) are defined by the functions u (α) , w (α) ,
and v (α) in their diagonals and zeros in all other entries. Again, it is possible
to construct any type of chaos at any point α1 ∈ (0, 1) or (a, b) .

4 Conclusion

In this paper, we present a new method to generate a unified mathematical
model displaying rigorously the three main types of chaotic attractors known
in the current literature. This result is the first step toward a global unification
of processes in nature.
Finally, we introduce the following first open problem:
(1) Is a unifying chaotic dynamical system possible?
and the second one is about the persistence property of each type of chaos

in the model. Indeed, dynamical persistence means that a behavior type, i.e.,
equilibrium, oscillation, or chaos does not change with functional perturbation
or parameter variation. Mathematically, persistent chaos (p-chaos) of degree
p for a dynamical system can be defined as follows: Assume a map fξ : X →
X ⊂ Rd depends on a parameter ξ ∈ Rk. The map fξ has chaos of degree-p on
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an open set O ⊂ X that is persistent for ξ ∈ U ⊂ Rk if there is a neighborhood
N of U such that ∀ ξ ∈ N , the map fξ retains at least p ≥ 1 positive Lyapunov
characteristic exponents (LCEs) for Lebesgue almost every X in O.
In the previous analysis, the proposed mathematical system guaranteed the

nature property of the attractor only in a point in the bifurcation parameters
space, thus, we have the following question:
(2) Is there is a proposed model in which the persistence property is verified

by the resulting chaotic attractor in a specific region of space of bifurcation
parameters?
This problem add another view to the global properties of possible models

unifying chaotic phenomena.
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