
Chaos, Solitons & Fractals 51 (2013) 13–21
Contents lists availabl e at SciVerse ScienceDi rect 

Chaos, Solitons & Fra ctals 
Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier .com/locate /chaos
Evaluating Lyapunov exponent spectra with neural networks 
0960-0779/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chaos.2013.03.001

⇑ Corresponding author. Tel.: +1 6088901445; fax: +1 6088901438.
E-mail addresses: amaus@a-ma.us (A. Maus), sprott@physics.wisc.edu

(J.C. Sprott).
A. Maus a,⇑, J.C. Sprott b

a Computer Sciences Department, University of Wisconsin, 1513 University Avenue, Madison, WI 53706, United States 
b Physics Department, University of Wisconsin, 1150 University Avenue, Madison, WI 53706, United States 

a r t i c l e i n f o
Article history:
Received 12 June 2012 
Accepted 6 March 2013 
Available online 9 April 2013 
a b s t r a c t

A method using discrete cross-correlation for identifying and removing spurious Lyapunov 
exponents when embedding experimen tal data in a dimension greater than the origina l
system is introduce d. The method uses a distribution of calculated exponent values pro- 
duced by modeling a single time series many times or multiple instances of a time series.
For this task, global models are shown to compare favorably to local models traditionally 
used for time series taken from the Hénon map and delayed Hénon map, especially when 
the time series are short or contaminated by noise. An additional merit of global modeling 
is its ability to estimate the dynamical and geometrical properties of the original system 
such as the attractor dimension, entropy, and lag space, although consideration must be
taken for the time it takes to train the global models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

When presented with an experimental time series from 
a dynamical system, one is often faced with the question of
whether the underlying dynamic is chaotic, and if so to
quantify the sensitive dependence on initial conditions 
and attractor dimension. Such information is containe d in
the spectrum of Lyapunov exponents (LEs) which mea- 
sures the rate of divergen ce (or convergence if negative)
of nearby trajectories in the state space. Lyapunov expo- 
nents describe the evolution of a ball of initial conditions 
as they are stretched and squashed into an ellipsoid with 
principal axes correspondi ng to each exponent [1]. By con- 
vention, the LE spectrum is ordered from greatest to least 
values, and it can be used to calculate important measures 
of the dynamical system. For example, the Kolmogor ov- 
Sinai entropy can be determined by summing the positive 
LEs according to Pesin’s identity [2], the attractor dimen- 
sion can be estimated from the LE spectrum using the 
Kaplan–Yorke conjecture [3], and the state space dimen- 
sion can be determined from the number of non-spurious 
LEs.
If one knows the equation s that produced the data, the 
LE spectrum can be calculated exactly using the standard 
Jacobian algorithm in which the eigenvalues are calculated 
for the product of the Jacobian matrices along the orbit [4].
Gram-Schm idt re-orthonor malization is used to factor out 
multipliers that lead to numerical divergence and performs 
row reduction, helping to retain product matrix column 
independen ce. Even so, it is often necessary to follow the 
orbit for a long time to ensure that the state space is
adequately sampled and that the values obtained by the 
method have converged.

Since one rarely has the luxury of knowing the equa- 
tions, methods for approximat ing the LEs directly from 
the data have been proposed [4–8]. These methods 
typically estimate the local Jacobian by fitting the data in
the vicinity of each data point to a simple function by
considering the local neighborho od around a point. Since 
each neighborhood must contain sufficiently many points,
local methods are severely limited by the length of the 
time series and by the inevitabl e noise that accompanies 
experimental data, but they are reasonably fast since they 
require only a single pass through the data.

An alternativ e is to construct a global model of the data,
which is more difficult but has the advantage of using the 
entire data set and better averages the noise present in the 
data. Training such a global model with a sufficiently
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general functiona l form allows approximation of the LE
spectrum using the standard Jacobian algorithm as shown 
in [9].

With either method, one must choose an embedding 
dimension that adequately describes the state space or
dynamics of the system. Takens [10] showed that complete 
unfolding is guaranteed for a D-dimension al system if the 
model is embedded in a dimension greater than 2D. Algo- 
rithms such as false nearest neighbors and the plateau of
the correlation dimension calculation can be used to deter- 
mine the optimal embedding dimensio n [11,12]. We have 
recently proposed a method in which a global model of
the data is used to determine the optimal embedding 
dimension, and more particularly, the lag space for cases 
in which only a subset of the embedding dimension is
active [13].

If the embedding dimension d of a model is higher than 
the system dimension D, the estimated LE spectrum will 
contain d � D spurious LEs [14]. Embedding in a dimension 
higher than necessar y allows multiple solutions with 
different dynamics that have the same projection onto 
the D-dimension al manifold. Ideally, the dynamics in
dimensions greater than D would be limited. However,
these exponents are often positive and greater than the 
largest true LE even when the data are generate d from 
simple chaotic maps [15] and independen t of any mea- 
surement or reconstruction function used [16]. Identifica-
tion and removal of these spurious exponents is crucial 
since inaccuracies in the spectrum lead to incorrect 
estimation of other measures.
2. Spurious Lyapunov exponent identification 

Methods have been proposed to identify spurious LEs 
with varying degrees of success. Brown et al. [5] recom-
mended adding white measurement noise to the data. True 
Lyapunov exponents tend to be significantly more resistant 
to noise than spurious ones since dimensions unrelated to
the dynamics of the time series are dominated by noise 
and vary with it, while the other dimensions are simply 
contaminat ed. Alternately, varying the embedding dimen- 
sion may identify spurious exponents since true exponents 
are independen t of the choice of embedding while spuri- 
ous exponents will continually shift [17].

Parlitz [18] proposed using time reversal to identify 
spurious LEs. Reversing the order of the data points in
the time series results in a dynamic where even dimen- 
sions are reflected and odd dimensions are rotated in
time-delaye d embedding space. Such reversal generally 
converts attractors into repellors, reversing the sign of each 
LE. Models tend to fit the time-revers ed data just as well as
the actual data since the same state space points, outliers,
noise, and local curvature are present. Models that fit these 
data well will have true LEs whose values change sign 
when time is reversed while spurious exponents do not 
reverse sign since those exponents arise from fitting a
function to dimensions in which no informat ion is avail- 
able from the time series.

As an extension of Parlitz’s method, we propose a
method based on time series reversal that uses discrete 
cross-correlati on, referred to as cross-correlati on for the 
rest of the article, to identify and remove spurious expo- 
nents. Two sets of calculated LE values are produced from 
modeling a time series and its time-rever sed counterpart 
many times. After inverting the LE values in the time-re- 
versed set, a probability histogram is created for each set 
by sorting the LE values into bins in ascending order and 
counting the number of values in each bin then normaliz- 
ing the resulting vector. Discrete cross-correlation [19] is
applied to the two histograms . The forward histogram is
slid through the time-revers ed histogram to create a histo- 
gram that is then normalized. Spurious exponents are 
identified and removed by identifying peaks in this new 
histogram. To estimate the LE spectrum values, one can 
either take the center of the highest probabili ty bins as
the LE value or fit a parabola to the three nearest bin 
centers and take the maximum of the parabola as the LE
value. The latter was used to produce the results in this 
study. For higher-dime nsional systems with LE values that 
cluster closely together, greater resolution or more bins 
may be required to resolve overlaps in the values. The re- 
sults of cross-correlati on for a single sample of 512 points 
from the Hénon map are shown in Fig. 1. In Fig. 1(A), a
histogram of LE values, with 640 bins and 36,138 training 
instances with d = 6 is shown for the forward time series.
In this graph we expect the models of the data to find LE
values near the true LE values, 0.422 and �1.623, indicated 
by the arrows on the horizontal axis below Fig. 1(C), and 
the histogram shows high probability bins or peaks near 
these values. Without time reversal, the spurious expo- 
nents are spread out mostly in the range between �2
and �1 where a true exponent, �1.623, is known to exist.
In Fig. 1(B), the histogram of LE values for 34,918 training 
instances is shown for the time-reversed time series with 
the sign of the LE values already inverted and Fig. 1(C)
shows the results of cross-cor relation.

The cross-correlati on method is accurate in removing 
spurious LEs since it averages noise within the LE values be- 
tween different training instances. Since the method is gen- 
eral, the model used to reconstruct the LE spectra can be
easily changed. However, the method has particular issues 
that are time-series and model dependent. The method re- 
quires stochasticity in the model, training algorithm, or data 
that allow variation in the calculated LE values which is
highlighted in Fig. 2 where local linear fits are used to esti- 
mate the Hénon map’s LE spectrum. In Fig. 2(A) the forward 
and time-reversed histograms are shown overlaid with only 
a few bins overlapping, leading to inaccurate LEs in Fig. 2(B).
This problem stems from using the same model parameters 
for multiple training instances with a purely determinist ic
model. For parametric models with only a few parameters 
such as local linear fits, one can vary the model parameters 
to obtain variations in the estimate d LEs. Models such as
neural networks may also have variable parameters that 
are learned through a stochasti c training algorithm. For 
example, the training algorithm used in this paper depends 
on randomly selecting the weights while trying to improve 
the model’s accuracy. Through this random selection , the 
model searches a large space of possible solutions and will 
rarely find the exact same solution and LE spectrum. Back- 
propagation , another training algorithm, may produce the 



Fig. 1. Cross-correlating the probability distributions produced by training many neural networks with d = 6 on the Hénon map, with 512 points, removes 
the spurious Lyapunov exponents. The spurious exponents in the forward time series are removed around the negative exponent value because they shift 
when the time series is reversed and modeled. The peaks in the (C) correspond to exponent values, 0.413 and �1.602, which are close to the actual values,
0.422 and �1.623, indicated by the arrows.

Fig. 2. The LE value probability distributions and cross-correlation for Hénon map time series with 32,768 points produced by local linear models with 150 
neighbors. LE values tend to have low variance with an increased data length. The resulting cross-correlation is problematic if the distributions from the 
forward and time-reversed exponent values do not overlap. Introducing stochasticity by incorporating noise into the data, LE, or neighborhood may increase 
the amount by which values overlap.
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exact same LE values for the same data set since it usually 
only searches in directions that improve accuracy. How- 
ever, variations can be introduced by randomly initializing 
the neural network weights or by perturbing the weights 
as the network is trained. As an alternative to varying the 
model parameters, one could vary the dataset through the 
addition of noise or by varying how the data is partitioned 
between training instances .

Cross-correlati on in instances where an overspecified
model leads to highly variable LE values or numerous 
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peaks in the cross-correlate d graph results in more difficult
spurious LE removal. A different method for binning the 
data can be chosen to overcome the increased variabilit y
by giving more resolution to regions of the histogram that 
have higher density while keeping the number of bins con- 
sistent between the forward and time-revers ed time series.
To do this, one can combine the forward and time-reversed 
LE values into one histogram and hold the number of
points per bin fixed to obtain bins with a set number of
points. Using the bin boundaries, one separates the histo- 
grams and performs cross-correlation to record the highest 
probability estimated LEs. This process could be repeated 
with a different number of points per bin to determine 
which LE values are most consisten t. Binning based on
density also has a smoothing effect on the data and may 
reduce inaccuracies caused by binning too large of a region.
Using either strategy or combining both results can lead to
more accurate LE estimates.

3. The models 

Neural network and local linear fits were used to esti- 
mate LE spectra for discrete-time systems. The models 
were trained on time-delayed data taken from the Hénon
map and the delayed Hénon map and optimized for next- 
step prediction based on d dimensions or time lags. In
addition to removing the spurious exponents, the models 
produce more accurate LE values when using cross-corre- 
lation than by simply averaging a number of trials. The 
advantages of using global models can be seen in each of
the experiments .

As one of the global models considered, neural networks 
have a rich history. Hornik et al. [20] proved that neural 
networks are universa l approximat ors, showing that any 
smooth function could be represented to arbitrary accuracy 
by a single-layer feed-forward neural network with suffi-
ciently many neurons. Single-layer neural networks are 
composed of a matrix of coefficients that represent input 
connection strengths to each neuron and a vector repre- 
senting the strength of each neuron’s respective contribu- 
tion to the output, shown schematical ly in Fig. 3.

The general form used in this study is

x̂k ¼
Xn

i¼1

bi tanh ai0 þ
Xd

j¼1

aijxk�j

 !
Fig. 3. The neural network schematic.
where n is the number of neurons, aij is an n by d matrix of
coefficients, bi is a vector of coefficients of length n, x is the 
training time series, and x̂k is the predicted value for time 
step k. While these neural networks used a hyperbolic 
tangent nonlinearity, there is nothing to prevent using 
other functions such as polynomials. Using a quadratic 
nonlinearity with only two neurons allows a nearly perfect 
fit to Hénon map data, but we consider this to be a trivial 
and not very useful example other than to check the 
calculation.

One can fit a neural network to data by adjusting the 
connection strengths a and b to minimize the error. To
avoid having the network always train to one or more 
identical solutions, a stochastic training method was used.
The method resembles simulated annealing, with the coef- 
ficients chosen randomly from a slowly shrinking Gaussian 
neighborho od of the current best solution. The Gaussian is
taken to have an initial standard deviation of 2j centered on
zero to give preference to the most recent time lags (small j
values). The connection strengths are chosen to minimize 
the average one-step mean-squar e prediction error:

e ¼
Pc

k¼dþ1ðx̂k � xkÞ2

c � d

where c is the length of the time series (the number of data 
points). For each of the systems described, a network with 
four neurons (n = 4) was trained for one million iteration s
on the data. Adding more neurons allows better fits but 
at the expense of computation time. With an unknown 
system, it may be necessary to train with different num- 
bers of neurons to identify the optimum network size.

The neural network LE spectra estimations are 
compared to those obtained using the publicly available 
TISEAN package which impleme nts Sano and Sawada’s 
algorithm for estimating the LE spectra of experime ntal 
time series [8,21]. The LE spectrum in TISEAN is estimate d
by fitting local linear models of the form sn+1 = an sn + bn

where an and bn are given by the least squares minimiza- 
tion of r2 ¼

P
lðslþ1 � ansl � bnÞ2 and {sl} is the set of neigh- 

bors that are within some ball of distance � of sn or some 
fixed number of nearest neighbors of sn in the d-dimen-
sional embedding. After approximat ing the linearized flow
map, an, which ends up being the first row of the local 
Jacobian, the LE spectrum is estimated using the standard 
Jacobian algorithm.

We compare the global neural network model to local 
linear fits by testing their ability to approximat e the Hénon
map and delayed Hénon map systems. One advantage of
global models is their ability to create an analytica l
function of the experimental data. The hope is that if the 
function fits the data accurately, then one can generate 
an infinite amount of data from the model and estimate 
dynamical and topological properties of the original 
system that would traditionally require a much longer data 
record. In practice this is not generally the case except for 
simple systems. However, if the global model has been 
well trained, it can represent data even in regions of state 
space where data are sparse. Additionally, global models 
tend to be robust to small amounts of noise due to their 
ability to average this noise over the entire attractor.
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Although global models have these advantages, they often 
suffer from training inefficiency. For example, a neural net- 
work must be trained to fit the data, requiring many passes 
through the data set and many changes to the connection 
strengths. Furthermore, for many training algorithms 
including the one described, there is no proof of conver- 
gence or guarantee that the neural network will ever find
the global solution since the space being explored is non- 
convex. Unlike neural networks , local linear fits excel in
their simplicity and efficiency. Local models need only 
one pass through the data to calculate averages and near- 
est neighbors and to estimate the LE spectrum. However,
local models suffer when the time series is short or noisy,
as will be shown. They also do not accurately represent 
regions of the attractor where data are sparse or regions 
off the attractor.
4. Numerical results 

The advantages of neural networks are illustrated by
comparing their predicted Lyapunov exponent spectra 
with the spectra predicted from the local linear model 
using data from the Hénon map [22] and data of various 
lengths taken from the delayed Hénon map [23] with and 
without added noise.

The Hénon map in time-delayed form,

xk ¼ 1� 1:4x2
k�1 þ 0:3xk�2

and its strange attractor in Fig. 4, represents a simple two- 
dimensional system with LE values of 0.422 and �1.623 as
shown in [24]. For the following results, the embedding 
dimension of the models was set to six; since the Hénon
map is a two-dimensi onal system, four spurious LEs should 
be produced. The number of nearest neighbors used in the 
local linear fits was fixed at 230; a value chosen to mini- 
mize the LE spectrum error using a tuning set of 4096 
Fig. 4. The strange attracto
points taken from the Hénon map. The number of neurons 
needed to model the data by the neural network can also 
be chosen in a similar manner since the use of a training 
set helps to estimate the model complexity required for 
the system. Neural networks with four neurons can accu- 
rately model the systems studied.

Table 1 summarizes the results for each method applied 
to the Hénon map with 32,768 points where 200 trials 
represents the models trained on 100 forward time series 
and 100 time reversed time series. Even for this simple 
map, spurious exponents are intermingled with real values 
and in some cases are within just a few percent of the 
actual exponents. Cross-correlation serves to remove these 
spurious exponents but at the expense of accuracy. Since 
we know the actual LE values of the Hénon map, we can 
compare the averaged exponents to the actual exponents 
for the neural network by manually removing the spurious 
exponents from the averaged forward exponents, resulting 
in absolute errors of 0.007 and 0.068 while cross-cor rela- 
tion removes the spurious exponents and has absolute 
errors of 0.007 and 0.041.

The local linear fits were able to estimate a positive 
exponent with an absolute error of 0.009 after cross-corre- 
lation but could not determine the negative exponent 
accurately. One of the difficulties in determini ng the LE
spectrum is estimating the negative exponent which 
measures the converge nce of orbits to the attractor, for 
which data are usually absent in the time series. For both 
the forward and reversed time series, spurious exponents 
are intermingled with the actual exponents and in the 
forward time series, a spurious exponent is produced that 
is larger than the largest exponent. Even with cross-corre- 
lation, two spurious exponents are produced, highlighting 
the fact that unless local linear fits find LE values consis- 
tent between the forward and reversed time series, the dis- 
tributions of LE values may not overlap and produce any 
cross-correlate d LE values. Local linear fits tend to produce 
r of the Hénon map.



Table 1
The averaged exponents for 100 trials with 32,768 points in each time series taken from the Hénon map. Also included for each model are the results of cross- 
correlating the 200 time series. LEs are removed from the results if they are considered to be spuriou s, the absolute error is greater than 0.5 when compared to
the actual values. In practice, greater accur acy could be achieved by varying data length, noise levels, or model parameter s.

k1 k2 k3 k4 k5 k6

Actual exponents 0.422 �1.623 
Neural network with four neurons Data 0.415 �1.399 �1.555 �1.703 �1.829 �2.291 

Reversed 1.565 �0.434 �1.445 �1.540 �1.704 �1.890 
Cross-correlation 0.415 �1.582 
Error 0.007 0.041 

Local linear fits with 230 neighbors Data 1.318 0.809 0.398 �0.790 �1.477 �1.904 
Reversed 2.099 1.326 0.801 �0.429 �0.869 �1.340 
Cross-correlation 1.330 0.413 �0.796 
Error 0.009 
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low variance LE values when trained on a low complexi ty
system such as the Hénon map with a large number of
points as seen in Fig. 2. By varying the number of neigh- 
bors, additive noise, and number of points in the time 
series, values may overlap and produce more accurate 
cross-correlate d LE values.

The Hénon map can be generalized by replacing the 
linear term with an earlier iterate in the time series [23].
The delayed Hénon map,

xk ¼ 1� 1:6x2
k�1 þ 0:1xk�D

whose attractor is shown in Fig. 5, has an adjustab le
dimension parameter D that determines its complexity.
For these results, D is taken to be four, requiring an embed- 
ding dimensio n of four. Related to the embedding dimen- 
sion, its lag space has only two dimensions , 1 and D,
since the dynamics of the time series depend only on the 
first and D-th time delay [13,25]. The LE spectrum for this 
discrete dynamical system as determined from the equa- 
tions using Wolf’s method [4] is 0.381, �0.813,�0.900,
�0.971. The values are believed to be accurate to three 
Fig. 5. The strange attractor of the
significant digits because the exponents have converged 
to these values after one billion iterations from ten differ- 
ent initial conditions within the basin of attraction.

If one embeds the time series in a six-dimensiona l
space, two spurious LEs will be produced since the original 
system only requires an embedding of four. Table 2 shows
how neural networks compare to local linear fits with 10
neighbors when each method is used to estimate the spec- 
trum of the delayed Hénon map.

Similar to the Hénon map, both of the models produce 
two spurious exponents that are dissimilar from the rest.
The neural network’s spurious exponents are highly nega- 
tive compared to the real exponents , making them 
relatively easy to identify and remove for this map. Local 
linear fits produce spurious exponents that are intermin- 
gled with the real exponents. If we only select the averaged 
exponents nearest to the actual exponent values in the 
forward time series, the exponent values have a lower er- 
ror than the reversed data. Using cross-correlation in- 
creases the overall accuracy of the spectrum for the 
neural network however local linear fits only produce 
one accurate positive exponent and a spurious exponent 
 delayed Hénon map (D = 4).



Table 2
The averaged exponents and resulting cross-correlation for 100 trials each with 32,768 points taken from the delayed Hénon map with D = 4. 1% White noise 
was introduced into the results of the local linear fits during cross-correlation so LE values in the histogra ms would overla p.

k1 k2 k3 k4 k5 k6

Actual exponents 0.381 �0.813 �0.900 �0.971 
Neural network with 4 neurons Data 0.381 �0.794 �0.899 �0.988 �2.524 �2.906 

Reversed 1.042 0.763 0.441 �0.482 �2.611 �3.035 
Cross-correlation 0.383 �0.765 �0.903 �0.964 
Error 0.002 0.048 0.003 0.007 

Local linear fits with 10 neighbors Data 0.926 0.393 �0.292 �0.829 �0.973 �1.199 
Reversed 1.128 0.920 0.755 0.225 �0.407 �0.907 
Cross-correlation 0.9207 0.40 
Error 0.015 
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that is larger than the most positive real LE. This inaccuracy 
arises from the lack of variation in LE values even with 1%
white noise introduced into the resulting LE values to
increase overlaps in the histograms.

In practice, one rarely has the advantage of having long,
noise-free data sets such as the ones described for the 
Hénon and delayed Hénon maps. To test and compare 
the performance of each method under more adverse con- 
ditions, variable noise and data length were introduce d to
time series from the delayed Hénon map. To test data 
length, time series were collected with 64 points through 
32,768 points in powers of two. For each length of data,
distribution s of LE values were produced from two hun- 
dred different models embedded in six dimensions , one 
hundred on the forward time series and one hundred on
the time-revers ed time series. Local linear fits were param- 
eterized with 40 neighbors and neural networks with four 
neurons. After cross-correlati on, the mean square LE error 
was calculated between the estimate d LE values and the 
expected LE values as shown in Fig. 6. The results show 
that the mean square errors for the neural network are 
about ten times smaller than the local linear fits in all of
Fig. 6. The error in the averaged exponents for 100 trials from each model for the
spurious LEs for local linear fits was performed manually.
these time series. However, the error of the local linear 
models decreases as more points are added, whereas the 
global model errors change very little. The increase in error 
when the number of points reaches 32,768 may indicate 
that the neural networks need to be trained further.

The methods were also compare d on time series with 
added measureme nt noise. The models were embedde d
in six dimensions and trained on varying levels of Gaussian 
white noise added to 4096 points taken from the delayed 
Hénon map. The error in the average values of the expo- 
nents for one hundred trials are shown in Fig. 7. The neural 
network outperform s the local linear fits for all levels of
noise shown. For adequately sampled attractors , the mod- 
els successfully average small levels of measure ment 
noise; however, neural networks’ robustness lies in their 
ability to create a global determinist ic model that is noise 
free albeit with some distortion of the signal.

The models were finally tested on normalized data 
taken from a nuclear magnetic resonance laser [26]. We
apply the cross-correlati on method to local linear fits and 
neural network models with d = 3 trained on this data 
set. The neural network was initialized with four neurons,
 delayed Hénon map (D = 4) for varying length time series. The removal of



Fig. 7. The error in the averaged exponents for 100 trials from each model trained on 4096 points from the delayed Hénon map (D = 4) for time series 
corrupted with Gaussian white noise. The error bars represent one standard deviation. The removal of spurious LEs for local linear fits was performed 
manually.

Table 3
The averaged exponents and resulting cross-correla tion for 200 trials of the nuclear magnetic resonance laser data set.

k1 k2 k3

Neural network with four neurons Data 0.251 �0.315 �1.178 
Reversed 0.197 �0.247 �0.604 
Cross-correlation 0.290 �0.086 �0.364 

Local linear fits with 50 neighbors Data 0.267 �0.652 �1.060 
Reversed 0.415 �0.293 �1.011 
Cross-correlation 0.277 
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a value chosen by minimizing the next step prediction 
error on a training set of 1000 points and trained for one 
million iterations. The neural network then estimated the 
LE spectrum using 25,000 points and 1% noise. The number 
of neighbors used in local linear fits was set to 50, a value 
chosen by minimizing the next step predictio n error on
15,000 points. Local linear fits used blocks of 25,000 points 
and 1% noise to introduce the variation needed in cross- 
correlation. The results for 200 trials for each model can 
be seen in Table 3. For the forward time series, the neural 
networks produce three exponents with two exponent val- 
ues that are similar to local linear fits. Since both models 
produce exponent values near 0.28, one could study how 
consistent the exponent values are by varying the time ser- 
ies further and studying its effect. In [21], a similar data set 
with LE values more consisten t with the local linear fits
forward time series averaged exponent values is studied.

5. Conclusions 

Neural network and local linear models are fit to the 
Hénon map and its more complex counterpart, the delayed 
Hénon map. Results are also shown for time series with 
various lengths of data and additive noise. Local linear fits
are shown to work well for time series with many 
thousands of data points while global neural network 
models produce accurate LE spectra in these simple sys- 
tems with as few as 64 points. Local linear fits rely on sim- 
ple local models to determine the LE spectrum but require 
a large number of points so the neighborho od of each data 
point is adequate ly populated. When noise is introduced,
local linear fits and neural networks fail in cases where 
the noise is prevalen t, although neural networks are shown 
to be more robust to noise, highlighting one of the 
strengths of global models. Neural networks build a global 
model of the data, but there is a trade-off between the 
amount of computation required and accuracy of the mod- 
el. In computation- sensitive applications, local linear fits
would be advantag eous since the LE spectrum can be esti- 
mated in one pass through the data.

A method for removing spurious exponents is introduce d
that can estimate the actual exponent values by cross-corre- 
lating the distributions of LE values produced by estimating 
the LE spectrum for a time series and its time-revers ed coun- 
terpart many times. The method is shown to perform favor- 
ably for the systems studied and works with any model of
the time series, but care should be taken when LEs have very 
similar values within a given system’s LE spectrum or when 
the forward and reversed LE value distributions in the 
resulting cross-cor relation do not overlap.

The use of neural networks and other models remains 
important in the study of dynamical systems, and much 
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can be gleaned by analyzing models trained on experimen- 
tal data. Further studies involving transformation s of the 
data through various observer functions and the study of
continuous-ti me systems are beyond the scope of this pa- 
per but will be the subject of future work.

A Windows version of the program used in this study is
available on the Web at http://sp rott.physics.wi sc.edu/ 
chaos/maus/l agspace.htm .
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