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Estimating parameters of a model system using observed chaotic scalar time series data is a
topic of active interest. To estimate these parameters requires a suitable similarity indicator
between the observed and model systems. Many works have considered a similarity measure in
the time domain, which has limitations because of sensitive dependence on initial conditions. On
the other hand, there are features of chaotic systems that are not sensitive to initial conditions
such as the topology of the strange attractor. We have used this feature to propose a new cost
function for parameter estimation of chaotic models, and we show its efficacy for several simple
chaotic systems.
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1. Introduction

Chaos is a common feature in nonlinear dynami-
cal systems. Many systems in fields such as biology
and economics exhibit chaos, and the study of such
systems and their signals has progressed in recent
decades. It has been claimed that many biological
systems, including the brain (both in microscopic
and macroscopic aspects) [Rabinovich et al., 2006;
Korn & Faure, 2003; Gong et al., 1999] and the
heart [Signorini et al., 1997; Kantz & Schreiber,
1997], have chaotic properties, as well as the atmo-
sphere [Patil et al., 2001] and electronic circuits
[D’Humieres et al., 1892; Cumming & Linsay, 1988|.

Control and synchronization of chaotic systems
have been investigated in a variety of fields dur-
ing the past two decades [Ott et al., 1990; Hubler,
1989]. Most existing approaches require adjusting
the parameters of the model. These parameters pro-
vide insight into their complex behavior. However,
direct measurement of experimental system param-
eters is often difficult, although the time series of a
chaotic experiment can usually be recorded. There-
fore, estimating model system parameters from an
observed chaotic scalar time series has become an
active area of research [Wang & Xu, 2011; Wang &
Li, 2010; Tao et al., 2007; Konnur, 2005; Mukhopad-
hyay & Banerjee, 2012; Tien & Li, 2012; Sun et al.,
2010; Tang & Guan, 2009; Yuan & Yang, 2012;
Modares et al., 2010; Wang et al., 2011; Tang et al.,
2012; Li et al., 2006b, 2012; Yang et al., 2009;
Coelho & Bernert, 2010; Marino & Miguez, 2006;

Li et al., 2006a; Li & Yin, 2012; Li et al., 2011;
Chang et al., 2008; Chang, 2007].

A basic method for achieving this goal involves
optimization [Wang & Xu, 2011; Wang & Li,
2010; Tao et al., 2007; Konnur, 2005; Mukhopad-
hyay & Banerjee, 2012; Tien & Li, 2012; Sun et al.,
2010; Tang & Guan, 2009; Yuan & Yang, 2012;
Modares et al., 2010; Wang et al., 2011; Tang
et al., 2012; Li et al., 2006b, 2012; Yang et al.,
2009; Coelho & Bernert, 2010; Marino & Miguez,
2006; Li et al., 2006a; Li & Yin, 2012; Li et al.,
2011; Chang et al., 2008; Chang, 2007] in which the
model parameters are chosen to minimize some cost
function. Although many optimization approaches
are used for this problem in the mentioned works
(see Table 1), they have one thing in common.
They define their cost functions based on similarity
between a time series obtained from the real system
and ones obtained from a model. They consider this
similarity in the time domain. In other words, they
regard the time correlation between two chaotic
time series as the similarity indicator.

On the other hand, we believe this method
has limitations and lacks consistency when the
model has sensitive dependence on initial conditions
[Aguirre & Billings, 1994; Wigdorowitz & Petrick,
1991] as does any chaotic system [Hilborn, 2001].
Thus there can be two completely identical (both
in structure and parameters) chaotic systems that
produce time series with essentially no correlation
due to a tiny difference in their initial conditions

Table 1. Different optimization methods which have been used for parameter estimation of chaotic systems.

Method

Reference

Hybrid biogeography-based optimization algorithm
Hybrid quantum-inspired evolutionary algorithm
Differential evolution algorithm

Genetic algorithm

Chaotic multiswarm particle swarm optimization

Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony

Drift particle swarm optimization
Particle swarm optimization

Hybrid Nelder—-Mead simplex search and differential evolution algorithm

Chaotic ant swarm
Chaotic gravitational search algorithm
Quantum-behaved particle swarm optimization

Modified ant colony optimization algorithm based on differential evolution

Gradient-descent method
Hybrid PSOSA strategy

Cuckoo search algorithm with an orthogonal learning method

Evolutionary programming

[Wang & Xu, 2011]

[Wang & Li, 2010]

[Tang et al., 2012; Li et al., 2011; Chang, 2007]
[Tao et al., 2007]

[Mukhopadhyay & Banerjee, 2012]

[Tien & Li, 2012]

[Sun et al., 2010]

[Tang & Guan, 2009; Modares et al., 2010]
[Wang et al., 2011]

[Li et al., 2006b]

[Li et al., 2012]

[Yang et al., 2009]

[Coelho & Bernert, 2010]

[Marino & Miguez, 2006]

[Li et al., 2006a]

[Li & Yin, 2012]

[Chang et al., 2008]
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[Jafari et al., 2012b; Jafari et al., 2013b]. We will
discuss this problem in detail in the next part. In
the third section we propose a new cost function
based on the similarity in return maps between
data from the real system and its model. In Sec. 4
we use this idea for chaotic flows using return
maps (or Poincaré maps), and finally Sec. 5 is the
conclusion.

2. Time Domain Versus State Space

Consider an iterated map (a set of difference equa-
tions) known to be chaotic:

Xpy1 = £(xp,0) (1)

in which x = (z1,29,...,2,) is the state vector
of the system and 6 = (61,6s,...,0,,) is a set of
parameters. In all the examples that follow, it is
assumed that we know the form of the system map
but not the parameters. Thus we have a model of
the form

Yi+1 = £(yx, 0) (2)
in which y = (y1,¥2,...,yn) is the state vector of
the model and 6 = (51, ég, e ,ém) is the set of esti-
mated parameters. Our goal is to find values of 6
that are close to 8 when we do not know 6 but only

have access to a measured scalar time series from
the system.

A simple conventional method is to define the
following cost function (or something conceptually
similar) [Wang & Xu, 2011; Wang & Li, 2010;
Tao et al., 2007; Konnur, 2005; Mukhopadhyay &
Banerjee, 2012; Tien & Li, 2012; Sun et al., 2010;
Tang & Guan, 2009; Yuan & Yang, 2012; Modares
et al., 2010; Wang et al., 2011; Tang et al., 2012;
Li et al., 2006b, 2012; Yang et al., 2009; Coelho &
Bernert, 2010; Marino & Miguez, 2006; Li et al.,
2006a; Li & Yin, 2012; Li et al., 2011; Chang et al.,
2008; Chang, 2007]:

N
Cost Function = Z ¥k — Xkl (3)
k=1

where N denotes the length of the time series used
for parameter estimation, ||| is the Euclidean norm,
and Xj is those elements of x to which we have
experimental access. Because of limitations in the
measurement instruments and the environment, all
experimental data are mixed with noise to some
extent [Kantz & Schreiber, 1997]. Thus we can never
have the exact initial conditions of the system (the
error may be small, but not zero). Here, we deal
with chaotic systems whose main characteristic is
their sensitive dependence on initial conditions and
thus for which errors in the time domain are not a
good indicator as clarified by the following simple
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Fig. 1. Chaotic evolution of the logistic map with A = 3.76 showing the effect of a difference in the initial conditions of 0.1%.

The initial conditions are 1 = 0.8 and y; = 0.8008.
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example. Consider the logistic map,
Lh+1 — Aa:k(l — :L'k> (4)

Suppose that the value of A in the real system
is 3.76 (for which the map is chaotic) and we have
a model exactly like our system:

Yrt1 = Ayr(1 — yr). (5)

Figure 1 shows the effect of a difference in the initial
conditions of 0.1%.

If we calculate the cost function based on
Eq. (4) with that 0.1% difference in initial condi-
tions, we see that this method does not give a proper
cost function (Fig. 2) because it does not have a
global minimum at 3.76, and it is not monotonic
on both sides of that minimum (it is not convex).
Furthermore, we expect discontinuties in the cost
function due to the bifurcations that typically occur
in chaotic systems. Especially in the periodic win-
dows, we may see local maxima in the cost function
since the behavior will be very different from the
chaotic case with A = 3.76. As can be seen, the
global minimum occurs near A = 3, which is far
from the correct value.

One way to solve this problem is by control-
ling the chaotic system to take it out of the chaotic
regime. Then using the same controller on the
model, one can estimate the parameters in the new
situation where there is no sensitivity to initial con-
ditions. Such a method has limitations since many
chaotic systems such as the atmosphere, brain, or
heart, are not controllable. Or in some cases the

Cost Function

Fig. 2. Cost function obtained from Eq. (4). The initial con-
ditions are z1 = 0.8 and y; = 0.8008 with N = 1000.

data may have been gathered previously and are no
longer accessible.

Another reasonable but not always possible way
to overcome this problem uses near-term corre-
lation and frequent reinitialization of the model.
However, this method has limitations which are
discussed in detail in [Rowlands & Sprott, 1992].
Furthermore, all the states of the system may not
be observable or measurable, and thus it may not
be possible to repeatedly reinitialize the model. One
may only have access to one of the variables in a
high-dimensional system, or the observed variable
may have been transformed by a complicated or
unknown observer function. Such examples will be
shown in Secs. 3.2 and 3.4.

In chaotic systems, there are some features
that are not sensitive to initial conditions (invari-
ants) such as the Lyapunov exponents and attrac-
tor dimension [Hilborn, 2001] (note that while this
fact is widely used and is correct for most systems,
in the general case it may be not true, e.g. because
of so-called Perron effects of Lyapunov exponents
sign reversal [Leonov & Kuznetsov, 2007; Kuznetsov
et al., 2014]). In fact, the need for more general
criteria has motivated researchers to investigate
geometrical and statistical invariants which would
provide a means for characterizing nonlinear sys-
tems possessing low-dimensional chaotic dynamics.
Thus embedded trajectories [Broomhead & King,
1986; Moon, 1987], bifurcation diagrams [Haynes &
Billings, 1993], Lyapunov exponents [Wolf et al.,
1985; Abarbanel et al., 1989, 1990], and correlation
dimension [Grassberger & Procaccia, 1983; Wolf &
Bessoir, 1991] have been used to characterize and
compare reconstructed attractors and identified
models.

Although it may seem that such quantities
could be used as similarity indicators, they also
have limitations. For example, many very different
parameters give the same Lyapunov exponent for
a chaotic system such as the logistic map [Hilborn,
2001], although it may be possible to find a weighted
combination of such quantities that provides a
proper cost function.

Although chaotic systems have random-like
behavior in the time domain, they are ordered in
state space and have a specific topology. In other
words, there exists an attractor from which the sys-
tem trajectories do not escape, even though the
initial conditions change (of course, initial condi-
tions should be in the basin of attraction of that
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Fig. 3. Return maps for the logistic map with A = 3.76
showing independence of initial conditions. The initial con-
ditions are x1 = 0.8 and y; = 0.8008.

attractor, and there may be some difficulties due
to e.g. riddled basins or Wada basins [Breban &
Nusse, 2005; Alexander et al., 1992]). For exam-
ple, if we plot those random-like signals in Fig. 1
in return maps, we obtain ordered patterns (attrac-
tors) which are the same geometrically (Fig. 3).
Even two completely different initial conditions
result in similar patterns (Fig. 4). In this work we
propose using the similarity between these attrac-
tors as the objective function for parameter estima-
tion. In the next section we describe the algorithm
used.
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Fig. 4. Return maps for the logistic map with A = 3.76
showing independence of initial conditions. The initial con-
ditions are 1 = 0.5 and y; = 0.9.

3. Proposed Cost Function

To clarify the method, we describe the proposed
algorithm with several specific examples. As men-
tioned in Sec. 2, we are dealing with nonlinear
chaotic systems whose behavior can vary greatly
and suddenly with changes in the parameters. Thus
we expect rugged surfaces with many local optima.
As the number of parameters increases, the curse of
dimensionality appears. Therefore, we present four
examples in which the dimension of the parameter
space increases from one to four.

3.1. Logistic map example (one
parameter)

The attractors of the logistic map for nine different
values of A are shown in Fig. 5 after any transients
have decayed. As can be seen, all values of A pro-
duce similar parabolas that monotonically change
their amplitude. The only exception to this trend
is at A = 3.835 where a period-3 window occurs
and the pattern contains only three points on a
parabola. We need a computational tool to quantify
this qualitative discussion. There are many possible
algorithms based on pattern recognition and image
processing, but we here use a very simple algorithm.

Consider a time series of 300 samples from the
logistic map with A = 3.76 after discarding 100
samples to remove any transient. Then for each
value of A, we produce a time series from the model,
which in this case is the same logistic map. The
model time series need not be of the same length as
the original data, and is here taken as 600 points.
From the resulting two patterns in a 2-D embed-
ding, we perform the following two steps:

(a) For each point of the real pattern we find its
nearest neighbor in the model set of points and
calculate its Euclidean distance separation.

(b) For each point of the model pattern we find its
nearest neighbor in the real system set of points
and calculate its Euclidean distance separation.

Then we take the cost function for each value
of A to be the average of those distances over the
whole data set.

It is very important to note that “a” and “b”
steps do not work exactly the same and have differ-
ent roles. Their difference is most evident in peri-
odic windows. For example, consider the situation
in Fig. 6. Although the two patterns are very dif-
ferent, if we only use only “a” to calculate the cost
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Fig. 5.
0 and 1. Transient parts of the data are omitted.

function, it results in a spuriously low cost, whereas
also applying “b” solves this problem. Details can
be found in the flowchart in Fig. 7 which shows the
abovementioned procedure.

An important issue is determining the number
of data points required for a proper comparison and
quantifying the error that results from having a
paucity of data. The answer depends on the case
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Fig. 6. Return maps for the logistic map with A = 3.835

(red squares) and A = 3.95 (blue circles). The initial condi-
tions are random numbers between 0 and 1. Transient parts
of the data are omitted.

n

Return maps for the logistic map with nine different values of A. The initial conditions are random numbers between

under consideration and always involves a trade-
off. Fewer data samples may not cover the attrac-
tor, while having more data increases the simulation
time and complexity. If there is no limitation in the
runtime (as opposed to real-time applications which
impose constraints on the runtime), one can bias the
tradeoff in favor of accuracy (considering more sam-
ples). However, there are additional limitations. For
example, one may have access to a limited sample
of an experimental time series, whereas arbitrarily
many samples are usually available from computer
models.

The cost function for this case is shown in
Fig. 8 along with a bifurcation diagram for the
logistic map. As can be seen, this cost function has
the desired ideal properties. It shows the effect of
changing the parameter of the model, including the
bifurcations and the monotonic trend along with
a global minimum at exactly the right value of A
(here A = 3.76).

3.2. Logistic map with delayed
observer function (one
parameter)

Although we chose a simple example in which
the data and model are from the same equation
(the logistic map) to demonstrate the method,
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system to data points in phase plane (real data)
L,= number of system data points

v
Obtain L,, data points in phase plane
from model (artificial data)

Fori=1to L,
v

i
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artificial data and put their Euclidian distance in d;

¥
D=D+d

L +L

End

Fig. 7. Flowchart of the proposed method. Ls is the number
of real data and Ly, is the number of model data.

the method can be applied to more complicated
situations. For example, consider the following sys-
tem which is the logistic map with a delayed
observer function:

Th+1 = A:L'k<1 — :L'k> (6)

Yktl = Th41 T Tk

If we only have access to the time series of y, we
cannot use near-term correlation since we do not
know the values of x and thus cannot use them to
reinitialize the model.

However, our method can easily be applied to
this system. For this observer function, the time
series must be embedded in a 3-D space. Figure 9
shows the result for that system with A = 3.9.

3.3. Hénon map example (two
parameters)

An example with more than one parameter is the
Hénon map:

Tni1 =1 —Ca? + Bx,_1. (7)

Assume that the data come from the system with
B = 0.2 and C = 1.4. Since the Hénon map is
two-dimensional, the return map will be embedded
in a 3-D space (each iterate depends on two previ-
ous iterates). The cost function as seen in Fig. 10
is an approximately convex surface with a global
minimum in the right place. For some values of
B, C, and initial conditions, the solutions of the
model are unbounded, resulting in infinite cost func-
tion solutions, and these cases have been fixed at a
value of 0.1.

3.4. Tinkerbell map example (four
parameters)

Consider the Tinkerbell map as a two-dimensional
map with four parameters:

Tny1 =T — Yy + azn + byn ®
Ynt1l = 2XpYn + Ty + dyp.

The parameters a = 0.9, b = —0.6013, ¢ = 1.8
and d = 0.5 give a chaotic solution and are the
values to be predicted.

Like the logistic map with the delayed observer
function, this map is good for demonstrating limi-
tations of any cost function in the time domain. If
one has only access to the x or y time series in the
experimental data, one cannot use near-term cor-
relation because it is impossible to reinitialize the
map every few samples (because initial conditions
for both x and y are unknown; having only one of
them is not enough). On the other hand, having
four parameters makes it a difficult benchmark for
illustration. We performed the method in the 4-D
space of parameters to obtain the cost function. The
boundaries of the search space were selected in such
a way that the time series remains bounded. For
visualization purposes, a section of the cost func-
tion with b = —0.6013 and d = 0.5 is shown in
Fig. 11(a) [Fig. 11(b) shows its contour plot]. As
can be seen, although the surface is rugged (caused
by period windows) with many local minima, the
global minimum is in the right place [white square
in Fig. 11(b)], and the trend of the cost function
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Fig. 9. New cost function obtained by the proposed algorithm for the system described by Eq. (6) with A = 3.9. The initial
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Fig. 10. New cost function obtained by the proposed algorithm for the Hénon map.
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Proposed Cost Function

F 0015

Fig. 11. New cost function obtained by the proposed algorithm for the Tinkerbell map: (a) the a—c section with b = —0.6013
and d = 0.5 and (b) the contour plot of the a—c section. The white square is the global minimum of the cost function.
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Fig. 12. Conventional cost function for the Tinkerbell map: (a) the a—c section with b = —0.6013 and d = 0.5 and (b) the
contour plot of the a—c section. The white square is the global minimum of the cost function.
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can guide optimization methods. For a better judg-
ment, a similar section for the conventional method
(Eq. (3) with N = 100 and only 1% difference in
initial conditions) has been provided in Fig. 12.
As can be seen, the cost function surface is also
rugged, but its global minimum is not in the right
place. Furthermore, there is no guiding trend to the
optimum.

3.5. The effect of noise

As previously mentioned, all experimental data
have some amount of noise. There are many

0.1
0.09r
0.08
0.07r /\
0.06
0.05r

0.04

New Cost Function

0.03r

0.02

3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

methods that can be employed for removing such
noise, usually at the expense of distortion of the
signal [Kostelich & Schreiber, 1993; Han & Liu,
2009; Matassini & Kantz, 2002; Jafari et al., 2012a].
However, our method is robust to small amounts
of noise since it involves averaging over the entire
data set. Figure 13 shows the cost function for the
logistic map with A = 3.76 and additive Gaussian
noise. With a signal-to-noise ratio (SNR) of 30dB
or even 20dB, the cost functions are still accept-
able. However, when the SNR is 10dB, the cost
function no longer has its minimum at the correct
value of A.

0.09
0.08
o1} ’\
0.06 -
0.05

0.04r

New Cost Function

0.03 1

0.02

0.01 . . . . . . .
3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

0.1

0.09

0.08

New Cost Function

0.07 K

0.06 -

-;,

0.05 ! : !
3.6 3.65 3.7 3.75

3.8 3.85 3.9 3.95 4

Fig. 13. New cost function obtained by proposed algorithm in the presence of noise: (a) SNR = 30dB, (b) SNR = 20dB and

(c) SNR = 10dB.
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4. Applying Proposed Cost
Function on Chaotic Flows

4.1. Lorenz example

Consider a chaotic flow like the well-known Lorenz
system [Eq. (9)] and a model of it with two unknown
parameters [Eq. (10)]:

i =Py —x)
y=-—xz+rr—y
zZ=uxy— bz (9)
r=32, P=10, b=
=Py —x)
Yy=—xz+1re—y
z=uxy— bz (10)
r=7 P=7, b:§.
3

First, construct a return map based on one real
observed time series, for example by recording suc-
cessive local maxima of one of the time variables
(e.g. x(t)). These samples constitute a new time
series P(n). The return map is a plot of P(n + 1)
as a function of P(n) as shown in Fig. 14. There-
after, the procedure is the same as for the previous
iterated map example as shown by the flowchart in
Fig. 7. The cost function obtained by this method
is shown in Fig. 15.
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Fig. 14. Return map for the Lorenz system with r = 32,
P = 10 and b = 8/3 obtained from local maxima of the
x-variable.

4.2. Hidden attractors

Recent research has involved categorizing periodic
and chaotic attractors as either self-excited or hid-
den [Kiseleva et al., 2014; Kuznetsov et al., 2010,
2011a; Kuznetsov et al., 2011b; Leonov & Kuznetsov,
2011a, 2011b, 2013b; Leonov et al., 2014; Leonov &
Kuznetsov, 2013a; Leonov et al., 2011a; Leonov
et al., 2011b, 2012; Bragin et al., 2014]. A self-excited
attractor has a basin of attraction that is associ-
ated with an unstable equilibrium, whereas a hid-
den attractor has a basin of attraction that does
not intersect with small neighborhoods of any equi-
librium points. The classical attractors of Lorenz,
Rossler, Chua, Chen, Sprott (cases B to S), and other
widely-known attractors are those excited from
unstable equilibria. From a computational point of
view this allows one to use a numerical method in
which a trajectory that started from a point on the
unstable manifold in the neighborhood of an unsta-
ble equilibrium, reaches an attractor and identifies it
[Leonov et al., 2011b]. Hidden attractors cannot be
found by this method but are important in engineer-
ing applications because they allow unexpected and
potentially disastrous responses to perturbations in
a structure like a bridge or an airplane wing.

The chaotic attractors in dynamical systems
without any equilibrium points, with only stable
equilibria, or with lines of equilibria are hidden
attractors. That is the reason such systems are
rarely found, and only a few such examples have
been reported in the literature [Jafari & Sprott,
2013; Jafari et al., 2013a; Molaei et al., 2013; Lao
et al., 2014; Pham et al., 2014; Wang & Chen, 2012,
2013; Wei & Yang, 2012; Wang et al., 2012a; Wei,
2011; Wang et al., 2012b; Kingni et al., 2014]. In
this part we apply our method to one such system
in which the accurate parameter estimation may be
of even more importance, since even with the right
value of parameter one may fail to find the attrac-
tor. We have chosen the system NEg from [Jafari
et al., 2013a] [Eq. (11)] and a model of it with one
parameter [Eq. (12)]:

T=y

j=—z—yz (11)
é:xy+0.5x2 - 1.3

=y

y=—x—yz (12)
,é:a:y+0.53327a
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New Cost Function

r

(b)

Fig. 15. New cost function obtained by the proposed algorithm for the Lorenz system: (a) the cost function surface and
(b) the contour plot of the cost function surface. The white square is the global minimum of the cost function which is in the
right place.
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Fig. 16. New cost function obtained by the proposed algorithm for a hidden attractor. The initial conditions are random

numbers and transient parts of the data are omitted.

The cost function obtained by this method can
be seen in Fig. 16 along with a bifurcation dia-
gram. As can be seen, this cost function too has the
desired properties. It shows the effect of changing
the parameter of the model, including the bifurca-
tions and the monotonic trend along with a global
minimum at the right value of a (here a = 1.3).

5. Conclusions

To estimate the parameters of a chaotic system that
produced a given time series requires proper indi-
cators of similarity between the experimental time
series and the time series generated by the model.
Sensitive dependence on initial conditions makes
this difficult in the time domain unless the system
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is one-dimensional with a simple observer function.
For parameter identification of chaotic systems, it
is generally better to use state space instead of the
time domain since the topology of a strange attrac-
tor does not depend on the initial conditions (within
its basin of attraction). Therefore a computational
method to obtain a new cost function based on the
similarity between attractors is proposed. This new
cost function works well for the examples shown and
it is easily extended to chaotic flows using Poincaré
section(s) or return maps to extract an appropriate
time series. We suggest that other geometry-based
cost functions can be designed, for example, using
the density of points in the different regions of the
attractor as a criterion for comparison of the data
with the model.
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