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Abstract In this study, we investigate a class of
chaotic synchronization and anti-synchronization with
stochastic parameters. A controller is composed of a
compensation controller and a fuzzy controller which
is designed based on fractional stability theory. Three
typical examples, including the synchronization be-
tween an integer-order Chen system and a fractional-
order Lü system, the anti-synchronization of different
4D fractional-order hyperchaotic systems with non-
identical orders, and the synchronization between a 3D
integer-order chaotic system and a 4D fractional-order
hyperchaos system, are presented to illustrate the ef-
fectiveness of the controller. The numerical simulation
results and theoretical analysis both demonstrate the
effectiveness of the proposed approach. Overall, this
study presents new insights concerning the concepts
of synchronization and anti-synchronization, synchro-
nization and control, the relationship of fractional and
integer order nonlinear systems.
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1 Introduction

Synchronization is based on the concept of closeness
of the frequencies between different periodic oscil-
lations generated by two systems. Since Pecora and
Carroll’s pioneering research work [1], chaos syn-
chronization, as an important topic in nonlinear sci-
ence, has been widely investigated in many fields, such
as information science [2], modern management [3],
chemistry [4], control engineering [5], physics [6],
nervous system [7], secure communication [8, 9], and
so on. Therefore, chaos synchronization is unlikely to
be a limited or temporary fashion. Many approaches
have been proposed for chaos synchronization, such
as adaptive control [10, 11], back stepping control
[12, 13], sliding mode control [14, 15], feedback con-
trol [16, 17], etc. The concept of synchronization has
been extended in scope to include phase synchroniza-
tion [18], generalized synchronization [19], lag syn-
chronization [20], and even anti-phase synchroniza-
tion (APS) [21–23]. APS can also be interpreted as
anti-synchronization (AS), which involves the state
vectors of the synchronized system and the master sys-
tem. Therefore, the sum of two signals is expected
to converge to zero when either AS or APS appears.
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1496 D. Chen et al.

To the best of our knowledge, chaos synchroniza-
tion and anti-synchronization has only been conducted
between integer-order systems or between fractional-
order systems [24]. There has been little information
available about the synchronization between a chaotic
fractional-order system and an integer-order system or
between chaotic systems with non-identical orders.

On the other hand, fuzzy control has also been ap-
plied to chaos control and chaos synchronization [24,
25]. An approach to control chaos via linear matrix in-
equality (LMI) based on fuzzy control system design
has been suggested in [26, 27]. Here the key idea is
to use the well-known fuzzy model to represent typ-
ical chaotic systems and then design a controller for
the fuzzy model. Takagi and Sugeno (T–S) type fuzzy
models were proved to be a powerful tool for control-
ling complex nonlinear systems. Time-delayed fuzzy
state-feedback controller was presented to reach syn-
chronization of chaotic systems by Lam et al. [28].
Roopaei et al. [29] used sliding mode control inte-
grated with an interval type-2 fuzzy system for syn-
chronization of two different chaotic systems in the
presence of system with external disturbances. How-
ever, there are few contributions on synchronization of
fractional order chaotic systems based on fuzzy con-
trol theory [30].

Most of the above studies are realized without any
external perturbations. However, noise disturbance is
inevitable from a practical point of view. Most of the
noise disturbance is stochastic from unknown factors
in the environment. Therefore, investigation of chaos
synchronization or anti-synchronization under the im-
pact of artificially uncertain parameters has become an
important research topic [31].

In light of the above analysis, there are three advan-
tages that make our approach attractive. First, synchro-
nization and anti-synchronization of a class of chaotic
systems with stochastic parameters are carried out in-
cluding three typical examples, which present new in-
sights concerning the concepts of synchronization and
anti-synchronization, synchronization and control, the
relationship of fractional and integer order nonlinear
systems. Second, a new controller composed of a com-
pensation controller and a fuzzy controller is presented
based on fractional stability theory, which is suitable
for a class of nonlinear systems. Finally, the numerical
simulation results are in good agreement with theoret-
ical analysis.

The rest of the paper is organized as follows: Sect. 2
presents stability theorems in the fractional calculus

and the generalized T–S fuzzy model. Moreover, con-
trolled stability of fractional order systems based on
the T–S fuzzy model is verified. Section 3 introduces
the system description and fuzzy controller design.
In Sect. 4, three typical examples are presented to
demonstrate the validity of the method discussed in
this paper. Numerical simulation results are also in-
cluded. Conclusions close the paper in Sect. 5.

2 Preliminaries

2.1 Stability theorem of fractional-order systems

Theorem 1 [32] We consider the following linear
fractional order system:

Dqx = Ax, x(0) = x0. (1)

Here A ∈ Rn×n, x ∈ Rn, and q = [q1, q2, . . . , qi, . . . ,

qn] (0 < qi ≤ 1). System (1) is asymptotically sta-
ble if and only if | arg(λi)| > qπ/2 is satisfied for
all eigenvalues λi of the matrix A. Furthermore, this
system is stable if and only if | arg(λi)| ≥ qπ/2 is
satisfied for all eigenvalues λi of the matrix A and
those critical eigenvalues that satisfy the condition
| arg(λi)| = qπ/2 have geometric multiplicity one. By
the way, the geometric multiplicity of an eigenvalue is
defined as the dimension of the associated eigenspace,
i.e., number of linearly independent eigenvectors with
that eigenvalue.

2.2 Generalized T–S fuzzy model

Here we briefly describe the fuzzy logic system. For
a continuous nonlinear system, the generalized T–S
fuzzy model is shown as follows:

Rule i:
IF z1(t) is Mi

1, z2(t) is Mi
2, . . . , and zp(t) is Mi

p,

THEN Dαx(t) = Aix(t), i = 1,2, . . . , r, (2)

where x(t) = [x1(t) · · ·xn(t)]T ∈ Rn is the state vec-
tor, Ai ∈ Rn×n, α is the fractional order, and r is
the number of fuzzy sets. The zj (t) (j = 1,2, . . . , p)

are the premise variables, and Mi
j (j = 1,2, . . . , p) is

the input fuzzy set. According to the singleton fuzzi-
fier, product fuzzy inference, and weighted average de-
fuzzifier, the output of the general T–S fuzzy model is
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Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization 1497

inferred in the following form:

Dαx(t) =
∑r

i=1 ωiAix(t)
∑r

i=1 ωi

(3)

where ωi = ∏p

j=1 Mij (zj (t)).
With hi(z(t)) = ωi/

∑r
i=1 ωi , the equation can be

rewritten as

Dαx(t) =
r∑

i=1

hi

(
z(t)

)
Aix(t) (4)

in which
∑r

i=1 hi(z(t)) = 1 and hi(z(t)) can be
treated as normalized weights of the IF–THEN rules.

2.3 Fuzzy Control

Suppose that a fractional order system can be repre-
sented exactly by the T–S fuzzy model shown in sys-
tem (2). Assume that the fuzzy controller is chosen as

Rule i:
IF z1(t) is Mi

1, z2(t) is Mi
2, . . . , and zp(t) is Mi

p,

THEN U ′(t) = −Fix(t). (5)

Therefore, the fuzzy controller can be described as

U ′(t) = −
r∑

i=1

hi

(
z(t)

)
Fix(t). (6)

Considering Eqs. (6) and (4), the whole controlled sys-
tem can be described as

Dαx(t) =
r∑

i=1

hi

(
z(t)

)
(Ai − BFi)x(t). (7)

Here, the matrix B is the matrix of the controller,
which is usually an identity matrix.

Theorem 2 If there exists a feedback gain Fi such that

G = A1 − BF1 = Ai − BFi, i = 1,2, . . . , r (8)

and the condition | arg(eig(G))| > απ/2 is satisfied as
well, then the chaotic fractional order system (2) is
asymptotically stable.

Proof If condition (8) holds, that is, G = A1 −BF1 =
Ai − BFi (i = 1,2, . . . , r), then the fractional order
system can be represented as

Dαx(t) = Gx(t). (9)

Furthermore, the condition | arg(eig(G))| > απ/2 is
satisfied. We infer that system (9) is globally stable
from Theorem 1. Thus the fractional order chaotic sys-
tem (2) is asymptotically stable according to the fuzzy
controller equation (6). The proof is finished com-
pletely. �

Remark 1 If the matrix B is nonsingular and the ma-
trix G is selected to satisfy the condition
| arg(eig(G))| > απ/2, then we can obtain the feed-
back gains Fi = B−1(Ai − G).

3 Generalized synchronization

3.1 System description

We consider a class of fractional order chaotic systems
with uncertain system parameters. A drive system and
a response system are described, respectively, by

Dαx = Ax + f (x) (10)

and

Dβy = Cy + g(y) + U(t), (11)

where x, y ∈ Rn are the n-dimensional state vectors
for the drive and response systems, respectively. f,g :
Rn → Rn is a continuous vector function for the sys-
tem. U(t) is the controller to be designed later. α and
β are n × 1 vectors to denote the chaotic order for
each state of the drive and response systems. A and C

are parameter matrices for the linear part of the above
drive and response systems.

Our aim is to design a suitable effective controller
U(t) such that the trajectory of the response sys-
tem asymptotically approaches the drive system and
synchronization between the two systems is finally
achieved.

3.2 Fuzzy controller design

To obtain the control law, the synchronization error is
defined as

e = y − χx, (12)

where χ is an arbitrary constant scaling factor (χ ∈ R).
Here we divide the controller U(t) into two sub-
controllers U1(t) and U2(t), i.e., U(t) = U1(t) +

Author's personal copy



1498 D. Chen et al.

U2(t). The sub-controller U1(t), a compensation con-
troller, is composed as

U1(t) = Dβ(χx). (13)

Substituting the sub-controller (13) into system (11)
gives the system

Dβe = Cy + g(y) + U2(t). (14)

According to the T–S fuzzy model in Sect. 2.2,
the fractional order system (14) without the con-
troller can be exactly represented by the T–S fuzzy
model, which is

∑r
i=1 hi(z(t))Ciy(t). Furthermore,

in view of Sect. 2.3, a fuzzy controller is U2(t) =
−∑r

i=1 hi(z(t))Fiy(t). Therefore, the error dynam-
ical system can be rewritten as

Dβe =
r∑

i=1

hi

(
z(t)

)
Ciy(t) −

r∑

i=1

hi

(
z(t)

)
BFiy(t)

=
r∑

i=1

hi

(
z(t)

)
(Ci − BFi)y(t). (15)

Now the total control law can be obtained as

U(t) = U1(t) + U2(t)

= Dβ
(
χx(t)

) −
r∑

i=1

hi

(
z(t)

)
BFiy(t). (16)

Theorem 3 When the response system (11) is driven
by the controller (16) with appropriately chosen feed-
back gains Fi(G = C1 − BF1 = Ci − BFi) and
| arg(eig(G))| > βπ/2, the error system (15) will be
stable and converge to zero so that synchronization is
realized.

Remark 2 If the chaotic orders in the drive system (10)
are αi = 1, that is, ẋ = Ax + f (x), then the syn-
chronization between a fractional-order system and an
integer-order system can be achieved using the con-
troller (16).

Remark 3 Since there exists a scaling factor χ (χ ∈ R),
we can choose the value of χ arbitrarily to meet our
needs. For example, the synchronization is realized
when χ = 1, and anti-synchronization is achieved
when χ = −1. Synchronization and anti-synchroniz-
ation can both be achieved by the same control.

Remark 4 Most system parameters change stochasti-
cally within a certain range. As we can see, the feed-
back gains Fi = B−1(Ci − G), which vary with sys-
tem parameters, that is, when the system parameters
change, the controller (16) changes in a certain regu-
lar way. For the system with stochastic parameters, the
controller is especially effective.

4 Numerical simulation

To illustrate the effectiveness of the proposed syn-
chronization scheme, three examples are considered,
and their numerical simulations are performed using
the Caputo version and a predictor–corrector algo-
rithm for fractional-order differential equations, which
is a generalization of the Adams–Bashforth–Moulton
method [33].

Case I Synchronization between an integer-order
chaotic system and a fractional-order chaotic system
with stochastic parameters.

The integer order drive system [34] is written as

⎧
⎪⎨

⎪⎩

ẋ1 = a(y1 − x1)

ẏ1 = (c − a)x1 − x1z1 + cy1

ż1 = x1y1 − bz1

(17)

where (a, b, c) = (35,3,28), and the initial conditions
are (x1, y1, z1) = (1,3,5). Assume that x1 ∈ [−d, d],
d > 0. Note that we determine the upper and lower
bounds, which is the foundation of the superposition
of linear matrices. Then the Chen system is described
in the T–S fuzzy model as follows:

Rule 1: IF x1 is M1(x) THEN Ẋ(t) = A1X(t);
Rule 2: IF x1 is M2(x) THEN Ẋ(t) = A2X(t).

(18)

Here,

X = [x1, y1, z1]T , A1 =
⎛

⎝
−a a 0

c − a c −d

0 d −b

⎞

⎠ ,

A2 =
⎛

⎝
−a a 0

c − a c d

0 −d −b

⎞

⎠ ,

M1(x) = 1

2

(

1 + x

d

)

, M2(x) = 1

2

(

1 − x

d

)

,
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d = 30.

Therefore, after the above equivalent transforma-
tion, the final form of the drive system can be written
as

Ẋ(t) =
2∑

i=1

hi

(
z(t)

)
Aix(t). (19)

Obviously, the variable x has been replaced by
its upper and lower bounds. Therefore, the controller
based on the fuzzy model is insensitive to stochastic
disturbances.

The response system, a fractional order chaotic sys-
tem [35], is described as

⎧
⎪⎨

⎪⎩

Dβ1x2 = a(y2 − x2),

Dβ2y2 = −x2z2 + cy2,

Dβ3z2 = x2y2 − bz2

(20)

where (a, b, c) = (35,3,28), with fractional order
β = [β1, β2, β3] = [0.90,0.92,0.94], and initial con-
ditions of the response system are (x2, y2, z2) =
(2,4,30). Assume that x2 ∈ [−d, d], d > 0. Then the
fractional order Lü system is described in the T–S
fuzzy model as follows:

Rule 1: IF x2 is M ′
1(x) THEN DβY(t) = C1Y(t);

Rule 2: IF x2 is M ′
2(x) THEN DβY(t) = C2Y(t).

(21)

Here,

Y = [x2, y2, z2]T , C1 =
⎛

⎝
−a a 0
0 c −d

0 d −b

⎞

⎠ ,

C2 =
⎛

⎝
−a a 0
0 c d

0 −d −b

⎞

⎠ ,

M ′
1(x) = 1

2

(

1 + x

d

)

, M ′
2(x) = 1

2

(

1 − x

d

)

,

d = 30.

Therefore, after the above equivalent transforma-
tion, the final form of the response system, Lü system,
is inferred as

DβY(t) =
2∑

i=1

h′
i

(
z(t)

)
CiY (t). (22)

From Remark 4, we select the system parameters
to be stochastic, such as a = 35 + 0.7 rand(t), b = 3 +
0.2 rand(t), c = 28 + 0.8 rand(t), where rand(t) is a
mathematical function that is stochastic and bounded,
i.e., | rand(t)| < 1.

For simplicity, choose B as the identity matrix. Ac-
cording to Remark 1, one selects

G =
⎛

⎝
−4 4 −1.5
−6 2 −6
−1 6 −4.5

⎞

⎠ ,

which satisfies | arg(eig(G))| > βπ/2. Thus, we can
obtain F1 = C1 − G and F2 = C2 − G.

The overall control law is given by

U(t) = DβX −
2∑

i=1

h′
i

(
z(t)

)
FiY. (23)

When the controller, Eq. (23), is added to Eq. (22),
it works. Trajectories of the states in the drive and re-
sponse systems with increasing time as shown in Fig-
ures 1 and 2 demonstrate that the error gradually con-
verges to zero.

Case II Anti-synchronization between two fract-
ional-order hyper-chaotic systems with uncertain
stochastic parameters and non-identical orders.

A new fractional-order hyperchaotic system [36] is
regarded as a drive system, described by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dαx1 = a1(y1 − x1),

Dαy1 = d1x1 + c1y1 − x1z1 − w1,

Dαz1 = −b1z1 + x1y1,

Dαw1 = x1

(24)

where a1, b1, c1, d1 are the system parameters. When
a1 = 36, b1 = 3, c1 = 28, d1 = −16, and the frac-
tional order is α = 0.85, its initial conditions are
(x1, y1, z1,w1) = (2,4,15,−3). Assume that x1 ∈
[−d, d], d > 0. Then the hyperchaotic system is de-
scribed in the T–S fuzzy model as follows:

Rule 1: IF x1 is M1(x) THEN DαX(t) = A1X(t);
Rule 2: IF x1 is M2(x) THEN DαX(t) = A2X(t).

(25)

Here,

X = [x1, y1, z1,w1]T ,

Author's personal copy
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Fig. 1 Trajectories of the
state variables in
integer-order chaotic
system and fractional-order
chaotic system

Fig. 2 Synchronization
errors between
integer-order chaotic
system and fractional-order
chaotic system
(e1 = x2 − x1, e2 = y2 − y1,
e3 = z2 − z1)
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A1 =

⎛

⎜
⎜
⎝

−a1 a1 0 0
d1 c1 −d −1
0 d −b1 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

A2 =

⎛

⎜
⎜
⎝

−a1 a1 0 0
d1 c1 d −1
0 −d −b1 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

M1(x) = 1

2

(

1 + x

d

)

, M2(x) = 1

2

(

1 − x

d

)

,

d = 30.

The final output hyperchaotic fuzzy system is in-
ferred as

DαX(t) =
2∑

i=1

hi

(
z(t)

)
AiX(t). (26)

A new fractional-order hyperchaotic Lorenz sys-
tem [37] is taken as a response system as given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dβx2 = a2(y2 − x2) + w2,

Dβy2 = c2x2 − y2 − x2z2,

Dβz2 = −b2z2 + x2y2,

Dβw2 = −x2z2 − r2w2

(27)

where a2, b2, c2, r2 are the system parameters.
When a2 = 10, b2 = 8/3, c2 = 28, r2 = 1, and the
fractional order is β = 0.98, its initial conditions
are (x2, y2, z2,w2) = (0,3,19,0). Assume that x2 ∈
[−d, d], d > 0. Then the hyperchaotic Lorenz system
is described in the T–S fuzzy model as follows:

Rule 1: IF x2 is M ′
1(x) THEN DβY(t) = C1Y(t);

Rule 2: IF x2 is M ′
2(x) THEN DβY(t) = C2Y(t).

(28)

Here,

Y = [x2, y2, z2,w2]T ,

C1 =

⎛

⎜
⎜
⎝

−a2 a2 0 1
c2 −1 −d 0
0 d −b2 0
0 0 −d −r2

⎞

⎟
⎟
⎠ ,

C2 =

⎛

⎜
⎜
⎝

−a2 a2 0 1
c2 −1 d 0
0 −d −b2 0
0 0 d −r2

⎞

⎟
⎟
⎠ ,

M ′
1(x) = 1

2

(

1 + x

d

)

, M ′
2(x) = 1

2

(

1 − x

d

)

,

d = 30.

Therefore, after the above equivalent transforma-
tion, the final form of the response system can be writ-
ten as

DβY(t) =
2∑

i=1

h′
i

(
z(t)

)
CiY (t). (29)

From Remark 4, we select the system parame-
ters to be stochastic. For the drive system, a1 =
36 + 0.4 rand(t), b1 = 3 + 0.2 rand(t), c1 = 28 +
0.6 rand(t), d1 = −16 + 0.2 rand(t), and for the re-
sponse system a2 = 10 + 0.4 rand(t), b2 = 8/3 +
0.1 rand(t), c2 = 28+0.7 rand(t), r2 = 1+0.3 rand(t).

For simplicity, choose B as the identity matrix, Ac-
cording to Remark 1, one selects

G =

⎛

⎜
⎜
⎝

−4 4 −1.5 2
−6 2 −6 3
−1 6 −4.5 3
−2 5 −3 1

⎞

⎟
⎟
⎠ ,

which should satisfy | arg(eig(G))| > βπ/2. Thus, we
can obtain F1 = C1 − G and F2 = C2 − G.

The overall control law is given by

U(t) = DβX −
2∑

i=1

h′
i

(
z(t)

)
FiY. (30)

Trajectories of the states of the drive and response
systems are shown in Fig. 3, while the synchronization
errors are shown in Fig. 4, which shows that the pro-
posed method is successful in anti-synchronizing the
two systems.

Case III Synchronization between an integer-order
system and a fractional-order system with different di-
mensions and stochastic parameters.

For a drive system, consider the integer-order Chen
system (17) in Case I, and for a response system, con-
sider the fractional-order hyper-chaotic Lorenz system
(27) in Case II.

Now let X = [x1, y1, z1,0]T , so that we can control
the state w2 in the response system to 0, and get the
overall control law

U(t) = DβX −
2∑

i=1

h′
i

(
z(t)

)
FiY, (31)
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1502 D. Chen et al.

Fig. 3 Trajectories of the
state variables in between
fractional-order
hyper-chaotic system (24)
and fractional-order
hyperchaotic Lorenz system

Fig. 4
Anti-synchronization errors
between fractional-order
hyper-chaotic system (24)
and fractional-order
hyperchaotic Lorenz system
(e1 = x1 + x2, e2 = y1 + y2,
e3 = z1 + z2, e4 = w1 +w2)
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Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization 1503

Fig. 5 Trajectories of the
state variables in 3D
integer-order chaotic
system and 4D
fractional-order Lorenz
system

where the selected parameters are the same as above.
Numerical simulation results are shown in Figs. 5

and 6, which demonstrate the effectiveness of the con-
trol proposed in this paper.

From the cases above, it is obvious that the con-
troller designed in this paper is perfect. The numerical
simulation results are in good agreement with theoret-
ical analysis. Comparing with prior works on chaotic
synchronization with uncertain parameters, the pro-

posed method is suitable for a class of chaotic systems,
including integer order chaotic systems and fractional-
order chaotic systems, and this type has a wider range
of applications. Moreover, this study presents new in-
sights concerning the concepts of synchronization and
anti-synchronization, synchronization and control, the
relationship of fractional and integer order nonlinear
systems. A supplement to this proposed method is that
two rules is not a fixed choice. If the selected rules

Author's personal copy



1504 D. Chen et al.

Fig. 6 Synchronization
errors between 3D
integer-order chaotic
system and 4D fractional
order 4D Lorenz system
(e1 = x2 − x1, e2 = y2 − y1,
e3 = z2 − z1, e4 = w2)

meet the requirements in Sect. 2.2, it will work well.
The number of the rules, however, is usually even.

5 Conclusions and discussion

In this paper, we have studied synchronization and
anti-synchronization of chaotic stochastic systems
with uncertain system parameters. Fuzzy control is
applied to chaotic systems in the T–S model. Three
different kinds of examples are provided to demon-
strate the validity of the fuzzy controller proposed
in this paper. Case I shows synchronization between
an integer-order Chen system and a fractional-order
Lü system, which provides a bridge between integer-
order chaotic systems and fractional-order chaotic sys-
tems, and lends theoretical support for fractional-order
chaotic systems. Case II brings attention to the anti-
synchronization of different 4D fractional-order hy-
perchaotic systems with non-identical orders, which
not only confirm that the controller is suitable for
hyperchaotic systems and non-identical order chaotic
systems, but also shows that synchronization and anti-
synchronization are essentially the same, which of-
fers the possibility for realizing synchronization and
anti-synchronization simultaneously using the same
method. Case III shows synchronization between an
integer-order system and a fractional-order system
with different dimensions and stochastic parameters. It
illustrates that different chaotic systems with different
dimensions can achieve synchronization. In essence,
chaos synchronization is a broad concept of chaos
control. In other words, chaos control is a special
case of chaos synchronization, and it is considered to
achieve synchronization with O(0,0,0). Here, the ex-
tra dimension w2 of system (27) is actually controlled

to 0. Moreover, the fuzzy controller is insensitive to
stochastic disturbances in the chaotic systems for that
the variable was replaced by coupling of two matrices
with upper and lower bounds in the process of a linear
matrix transform, which will be more instructional in
practical systems.

More and better methods for the synchroniza-
tion and anti-synchronization between integer-order
chaotic systems and fractional-order chaotic systems
or fractional-order chaotic systems should be studied.
In particular, it is easier to apply in industry devel-
oped synchronization approaches where the number
of controls is less than the number of state variables.
Moreover, this knowledge should be applied in engi-
neering to fields such as communications, and that will
be a subject of our future work.
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