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In this paper, we present a simple approach to produce n-scroll chaotic attractors in 3D quadratic
continuous time systems. The method of analysis is based on the number of equilibrium points.
Some numerical results are also given and discussed.

Keywords : 3D quadratic continuous time systems; classification; n-scroll chaotic attractors.

1. Introduction

In many situations, the existence of several equi-
librium points in a dynamical system makes its
dynamics more complex and allows some special
structures. Examples include the well-known mul-
tiscroll attractors ([Wang, 2009; Qi et al., 2008;
Liu & Chen, 2004; Li, 2008; Wang et al., 2009; Lü
et al., 2008; Yu et al., 2006; Yu et al., 2008, 2010a;
Wang & Chen, 2012] and references therein) such
as chaotic attractors with multiple-merged basins
of attraction, scroll grid attractors, and 2n-wing
and n×m-wing Lorenz-like attractors. It is remark-
able that the vector fields of all these systems are
very complex with high dimensions. In some other
situations, the number of equilibrium points has
no influence on the scroll number of the resulting
chaotic attractor. For example, in [Wang & Chen,
2012] the considered system has one equilibrium
point, but generates many-petal attractors. So the
existence of a system with only zero, one, or fewer
than n equilibrium points that generates n-scroll

chaotic attractors leaves an important open prob-
lem whose solution is not evident.

We notice that this type of attractor has several
real world applications. For example, the circuit
verification of proposed multiscroll chaotic systems
is very important for several potential engineering
applications such as secure communication and effi-
cient liquid mixing. See [Yu et al., 2010b] for more
details. Furthermore, multiscroll chaotic attractors
have wide applications in complex networks [Lü &
Chen, 2005] and multiagent systems [Zhu et al.,
2013].

2. Algebraically Simplest 3D
Quadratic Continuous Time
Systems with Several Scrolls

It is well known that lower-dimensional systems are
the algebraically simplest and appropriate models
for generating chaotic attractors. For this reason, it
is very interesting to construct such a system with
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many-scroll chaotic attractors. The natural candi-
dates for this choice are 3D quadratic continuous
time systems given by




x′ = a0 + a1x + a2y + a3z + a4x
2 + a5y

2

+ a6z
2 + a7xy + a8xz + a9yz

y′ = b0 + b1x + b2y + b3z + b4x
2 + b5y

2

+ b6z
2 + b7xy + b8xz + b9yz

z′ = c0 + c1x + c2y + c3z + c4x
2 + c5y

2

+ c6z
2 + c7xy + c8xz + c9yz

(1)

where (ai, bi, ci)0≤i≤9 ∈ R
30 are the bifurcation

parameters. Some observations on existing 3D
quadratic continuous time systems displaying
n-scroll chaotic attractors [Wang, 2009; Qi et al.,
2008; Liu & Chen, 2004; Li, 2008; Wang et al.,
2009; Yu et al., 2006] suggest that the algebraically
simplest form of these systems is given by



x′ = a1x + a2y + a3z + a9yz

y′ = b1x + b2y + b3z + b8xz + b9yz

z′ = c1x + c2y + c3z + c7xy + c8xz + c9yz.

(2)

We remark that it is not possible to reduce further
Eq. (2) by removing additional terms. The form
of the equations in (2) is a generalization of the
existing systems in the current literature. The
present paper investigates possible new cases giving
multiscroll attractors.

System (2) has 15 bifurcation parameters, and
its equilibria satisfy




x =
ω6z

3 + ω7z
2 + ω8z

a1µ2
, a1 �= 0, µ2 �= 0

y =
−ω4z

2 − ω5z

µ2
, µ2 �= 0

z(ω9z
5 + ω10z

4 + ω11z
3 + ω12z

2

+ ω13z + ω14) = 0

(3)

where {
µ2 = ω1z

2 + ω2z + ω3

µ3 = ω4z
2 + ω5z

(4)

where




ω1 = − 1
a1

a9b8, ω2 = b9 − 1
a1

a2b8 − 1
a1

b1a9,

ω3 = b2 − 1
a1

a2b1, ω4 = − 1
a1

a3b8,

ω5 = b3 − 1
a1

a3b1, ω6 = ω4a9 − ω1a3,

ω7 = ω4a2 − ω2a3 + ω5a9, ω8 = ω5a2 − ω3a3,

ω9 = ω1ω6c8 = 0

(5)

and



ω10 = δ1 + δ2

ω11 = δ3 + δ4

ω12 = δ5 + δ6 + δ7

ω13 = δ8 + δ9

ω14 = a1c3ω
2
3 + ω8c1ω3 − ω3ω5a1c2

(6)

where




δ1 = ω1ω6c1 + ω1ω7c8 + ω2ω6c8

δ2 = −ω4ω6c7 + ω2
1a1c3 − ω1ω4a1c9

δ3 = 2ω1ω2a1c3 − ω1ω4a1c2 − ω1ω5a1c9

−ω2ω4a1c9 + ω1ω7c1

δ4 = ω2ω6c1 + ω1ω8c8 + ω2ω7c8 + ω3ω6c8

−ω4ω7c7 − ω5ω6c7

δ5 = 2ω1ω3a1c3 − ω1ω5a1c2 − ω2ω4a1c2

−ω2ω5a1c9

δ6 = −ω3ω4a1c9 + ω2
2a1c3 + ω1ω8c1

+ ω2ω7c1 + ω3ω6c1

δ7 = ω2ω8c8 + ω3ω7c8 − ω4ω8c7 − ω5ω7c7

δ8 = ω2ω8c1 + ω3ω7c1 + ω3ω8c8 − ω5ω8c7

δ9 = 2ω2ω3a1c3 − ω2ω5a1c2 − ω3ω4a1c2

−ω3ω5a1c9.

(7)

The condition µ2 �= 0 in (3) is equivalent to three
assertions: ω2

2 − 4ω1ω3 < 0, or ω2
2 − 4ω1ω3 > 0

and z /∈ {−ω2+
√

ω2
2−4ω1ω3

2ω1
,
−ω2−

√
ω2

2−4ω1ω3

2ω1

}
or ω2

2 −
4ω1ω3 = 0 and z �= −ω2

2ω1
, that is,
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a1a2b8b9 >
1
2
((a1b9 − b1a9)2 + a2

2b
2
8

+ 2a9b8(2a1b2 − a2b1)) (8)

or 


a1a2b8b9 <
1
2
((a1b9 − b1a9)2 + a2

2b
2
8

+ 2a9b8(2a1b2 − a2b1))

z /∈
{
−ω2 +

√
ω2

2 − 4ω1ω3

2ω1
,

−ω2 −
√

ω2
2 − 4ω1ω3

2ω1

}
(9)

or 


a1a2b8b9 =
1
2
((a1b9 − b1a9)2 + a2

2b
2
8

+ 2a9b8(2a1b2 − a2b1))

z �= −ω2

2ω1
.

(10)

First, we remark that the point (0, 0, 0) is a solution
of the last equation of (3). Furthermore, additional
equilibria of system (2) are possible if the quintic
equation in (3) is solvable with respect to the vari-
able z. However, since we have that ω9 = 0, the last
equation of (3) becomes

z(ω10z
4 + ω11z

3 + ω12z
2 + ω13z + ω14) = 0.

(11)

Solving directly the quartic equation q(z) = ω10z
4+

ω11z
3+ω12z

2+ω13z+ω14 in (11) is a first method to
see if the system has several equilibria. Depending
on the choice of bifurcation parameters (ai, bi, ci),
this equation can have real or complex solutions.
We are interested here in finding only real solutions
of q(z) = 0. Some criteria are available in the cur-
rent literature about the solvability of quartic equa-
tions [Lazard, 2004]. Generally, a quartic equation is
solvable by radicals. It is also factorizable into equa-
tions of lower degree. However, determining real and
different solutions is difficult. Some additional con-
ditions on the bifurcation parameters (ai, bi, ci) can
be obtained by assuming that all the equilibria of
system (2) are unstable. In this case, possible n-
scroll chaotic attractors can be obtained. However,
a rigorous formulation for these conditions is not

possible for the general case. It is only possible for
special cases as shown in [Wang, 2009; Qi et al.,
2008; Liu & Chen, 2004; Li, 2008; Wang et al., 2009;
Yu et al., 2006].

We are looking for five different equilibria
(xi, yi, zi)0≤i≤4 of system (2) with (zi)1≤i≤4 �= 0 and
zi �= zj, if i �= j, with (x0, y0, z0) = (0, 0, 0). We can
write q(z) = ω10(z−z1)(z−z2)(z−z3)(z−z4), where
(zi)1≤i≤4 are given known values. The objective here
is to determine the values of the bifurcation param-
eters (ai, bi, ci) of system (13) in order to get four
additional equilibria. By this approach, system (2)
has five different equilibria given by

Pi =
(

ω6z
3
i + ω7z

2
i + ω8zi

a1(ω1z2
i + ω2zi + ω3)

,
−ω4z

2 − ω5z

ω1z2
i + ω2zi + ω3

, zi

)
,

i = 0, . . . , 5, (12)

where z0 = 0 and (zi)1≤i≤4 are supposed to be
known values. Equation (12) is possible if the fol-
lowing conditions hold


a1 �= 0

ω1z
2
i + ω2zi + ω3 �= 0, i = 1, 2, 3, 4

ω11

ω10
= −(z1 + z2 + z3 + z4)

ω12

ω10
= z3(z1 + z2) + z1z2 + z4(z1 + z2 + z3)

ω13

ω10
= −(z4(z3(z1 + z2) + z1z2) + z1z2z3)

ω14

ω10
= z1z2z3z4

ω10 = −a9b8(a3b8c9 − a3b9c8 + b3a9c8 − c3a9b8)
a1

(13)

and

a9b8 �= 0 and

a3b8c9 − a3b9c8 + b3a9c8 − c3a9b8 �= 0.
(14)

This procedure defines a type of pattern in the
bifurcation parameter (ai, bi, ci) space, i.e. if (13)
holds, then system (2) has five equilibria, and
chaotic attractors with several scrolls are possible.
A general solution of (13) is hard to find due to the
complicated algebraic formulas. However, a simple
approach can be used to find some special cases

1350120-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

3.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
08

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 30, 2013 11:30 WSPC/S0218-1274 1350120

Z. Elhadj & J. C. Sprott

Fig. 1. A three-scroll chaotic attractor of system (16) with
c8 = 0.23.

as follows: fix 14 bifurcation parameters of sys-
tem (2) and vary the last one. In this way, it is
possible to solve (13) and determine the correspond-
ing 3D systems of the form (2) with five different

equilibria. The set of solutions of the principal equa-
tion (13) is not empty since for (zi)0≤i≤4 = {0,
−1.607671, −1.318592, 0, 1.278669, 1.575707}, we
have



a1 = 1, a2 = −1, a3 = 0.5, a9 = −3,

b1 = −0.1, b2 = −6, b3 = 0,

b8 = 1, b9 = −1,

c1 = 0.06, c2 = −10, c3 = −5,

c7 = 2, c8 = 0.23, c9 = 0.

(15)

2.1. Example

In this section, we consider the following example
to validate the above approach:


x′ = x − y + 0.5z − 3yz

y′ = −0.1x − 6y + xz − yz

z′ = 0.06x − 10y − 5z + 2xy + c8xz.

(16)

System (16) is not symmetric under the natural
coordinate transforms (x, y, z) → (−x,−y,−z) and
(x, y, z) → (−x,−y, z). For c8 = 0.23, i.e. c8 �= 0,
system (16) produces a three-scroll strange attrac-
tor as shown in Fig. 1. Initial conditions of (1, 0, 0)

Fig. 2. Bifurcation diagram of system (16) for c8 < 0.5.
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Fig. 3. A three-scroll chaotic attractor of system (16) with
c8 = 0.0.

start the orbit close to the attractor. The Lya-
punov exponent spectrum is (0.2553, 0,−9.4545),
giving a Kaplan–Yorke dimension of 2.0270. We
notice that system (16) is dissipative since the sum
of the LEs is negative. Numerical calculations ver-
ify that the system (16) has five equilibria with

Fig. 4. A three-scroll chaotic attractor of system (16) with
c8 = 0.07.

Fig. 5. A three-scroll chaotic attractor of system (16) with
c8 = 0.25.

z ∈ {−1.607671,−1.318592, 0, 1.278669, 1.575707}.
All the interesting behavior occurs for c8 < 0.5 as
shown in the bifurcation diagram in Fig. 2.

Other chaotic attractors of system (16) are
shown in Figs. 3 (c8 = 0), 4 (c8 = 0.07), 5 (c8 =
0.25), and 6 (c8 = 0.27).

Fig. 6. A three-scroll chaotic attractor of system (16) with
c8 = 0.27.
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3. Conclusion

In this paper, we have presented an approach based
on finding the number of equilibrium points to
determine the algebraically simplest forms of 3D
quadratic continuous time systems with n-scroll
chaotic attractors. A numerical example is also
given and discussed to validate this approach.
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