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1. Introduction

Recently there has been interest in finding and studying rare
examples of simple chaotic flows such as those in which there are
no equilibria or in which any existing equilibria are stable [1-4].
There is little knowledge about the characteristics of such systems.
Here we consider chaotic flows with no equilibria. Such systems
can have neither homoclinic nor heteroclinic orbits [5], and thus
the Shilnikov method [6,7] cannot be used to verify the chaos.

We are aware of only three such examples that have been pre-
viously reported, although there may be additional cases for which
the lack of an equilibrium was not specifically noted. The oldest
and best-known example is the conservative Sprott A system [8]
listed as NE; in Table 1. This is an important system since it is
a special case of the Nose-Hoover oscillator [9] which describes
many natural phenomena [10], and thus it suggests that such
systems may have practical as well as theoretical importance. Re-
cently, two other dissipative examples have been reported, which
we call the Wei system [1] listed as NE; in Table 1 and the Wang-
Chen system [2], a simplified version of which with one fewer
term than previously published is listed as NE3 in Table 1.

2. Main results

We performed a systematic search to find additional three-
dimensional chaotic systems with quadratic nonlinearities and no
equilibria. Our search was based on the methods proposed in [11]

* Corresponding author. Tel.: +98 9357874169; fax: +98 2164542370.
E-mail address: sajadjafari@aut.ac.ir (S. Jafari).

0375-9601/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.01.009

and used our own custom software. Our objective was to find the
algebraically simplest cases which cannot be further reduced by
the removal of terms without destroying the chaos. The search was
inspired by the observation that each of the known examples con-
tains a constant term, and that if the constant is set to zero, the
resulting system is nonhyperbolic (the equilibria have eigenvalues
with a real part equal to zero). Two of them (Wei and Wang-Chen)
have a pair of imaginary eigenvalues. It is a general requirement
that chaotic systems of this type include such a constant term
since there would otherwise be at least one equilibrium point at
the origin (0, 0, 0). Thus we proceeded to search for additional ex-
amples using three basic methods:

(1) We added a constant term a to other nonhyperbolic sys-
tems. For example, the system

X=y
y=—-Xx+z
2:](1)(2-}-’{222 +k3y2+a (1)

with a =0 has an equilibrium at (0, 0,0) whose eigenvalues are
zero and pure imaginary. Adjusting and simplifying the parameters
k1, ka, k3, and a gives the chaotic system listed as NE; system in
Table 1.

(2) We looked at cases where we could show algebraically that
the equilibrium points are imaginary. For example, any chaotic so-
lution of a parametric system such as

x=y
y=z
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Table 1
Seventeen simple chaotic systems with no equilibria.

Model Equations a

LEs Dy

(X0, Yo, Z0)

NE; x=y

Sprott A y=-x—2zy 1.0
(Nose-Hoover) z=y?—a

x=-y

\I;I\Zzi Vy=x+z 0.35

7=2y>+xz—a

NE3 x=y
Simplified y=z 1.0
Wang-Chen Z=—y+0.1x* +1.1xz+a

x=-0.1y+a
NE4 y=x+z 1.0
z=xz-3y

x=2y

NEs y=-2x—1z 2.0
=—y>+22+a
x=y

NEg y=z 0.75
Z=—-y—Xxz—yz—a
x=y

NE; J=—x+z 2.0
7=-08x+2°+a
x=y

NEg y=—-x—-yz 13
z=xy+0.5%* —a
x=y

NEg y=—-x—-yz 0.55
7=—xz4+7x*—a

x=z
NEo j/:z—y 0.6
z=-09y —xy+xz+a

x=y
NE11 y=—-x+z 1.0
z=z-2xy—1.8xz—a

x=z
NE» j/:x—y 0.1
z=—4x* +8xy +yz+a

xX=-y

NE13 Vy=x+z 0.4
z=xy+xz+02yz—a
x=y

NE14 _)./=Z 1.0
s=x—y*+2xz+yz+a
xX=y

NE;5 j/:Z 1.0
z2=x>—y>+xy+04xz+a

X=-0.8x—0.5y* +xz+a
NE16 y=-08y—05z2+ yx+a 1.0
7=-0.82—0.5x%+zy+a

Xx=—y—2z2+23xy+a
NE;7 y=-z—-x*+23yz+a 2.0
Z=—x—y?>+232x+a

0.0138, 0, —0.0138 3.0000

0.0776, 0, —1.5008 2.0517

0.0522, 0, —2.6585 2.0196

0.0235, 0, —8.480 2.0028

0.0168, 0, —0.3622 2.0465

0.0280, 0, —3.4341 2.0082

0.0252, 0, —6.8524 2.0037

0.0314, 0, —10.2108 2.0031

0.0504, 0, —0.3264 2.1544

0.0061, 0, —1.3002 2.0047

0.0706, 0, —0.6456 2.1094

0.0654, 0, —2.0398 2.0321

0.1028, 0, —2.1282 2.0483

0.0532, 0, —11.8580 2.0045

0.1101, 0, —1.3879 2.0793

0.0607, 0, —0.1883 23224

0.2257, 0, —1.7477 21292

(0,5,0)

0,04,1)

(1,1,-1)

(—8.2,0,-5)

(0.98,1.8, —0.7)

(0,3,-0.1)

(0,2.3,0)

(0,0.1,0)

(0.5,0,0)

(1,0.7,0.8)

0,1.6,3)

(0.5,0,-1)

(2.5,0,0)

(1,0, —4)

(0,1, -4.9)

0,1,-1)

(1,-1,0)

Z=kix+kay +k3z+kax> + ksy? + kez?

+ k7xy + kgxz + koyz +a
k? — 4kqa <0 (2)
is a candidate. Adjusting the parameters ki, ..., kg, and a gives the

system listed as NEq4 in Table 1.
(3) We added a constant to each of the derivatives in known
chaotic systems and looked for solutions where the numerically

calculated equilibria do not exist. For example, Case O of refer-

ence [8] with added constants aq, ay, and as

x=kiy+a
V=kyx+ksz+ay
Z =kax + ksxz + key + as

gives the system listed as NE4 in Table 1.

(3)
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Fig. 1. State space diagram of the cases in Table 1 projected onto the xy-plane.
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Fig. 2. The largest Lyapunov exponent and bifurcation diagram of NEg showing
a period-doubling route to chaos.

All nineteen of the simple cases in reference [8] were examined
in this way, and only Case A (NE;) and Case D (NE;) have solu-
tions in addition to Case O (NE4). No variants of the Lorenz [12]
or Rossler [13] systems with added constant terms appear to ad-
mit chaotic solutions when the equilibria are removed. However,
there are two examples of circulant systems (systems symmetric
with respect to a cyclic rotation of the variables x, y, and z) [11]
listed as NE1g and NEq7 in Table 1.

In addition to the seventeen cases listed in the table, dozens of
additional cases were found that are extensions of these cases with
additional terms. For each case that was found, the space of coef-
ficients was searched for values that are deemed “elegant” [11], by
which we mean that as many coefficients as possible are set to
zero with the others set to +1 if possible or otherwise to a small
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integer or decimal fraction with the fewest possible digits. In this
way, we believe we have identified most if not all of the elemen-
tary forms of three-dimensional chaotic systems with quadratic
nonlinearities that have no equilibrium points.

3. Conclusion

Except for NEq, all these cases are dissipative with attractors
projected onto the xy-plane as shown in Fig. 1. The Lyapunov
spectra and Kaplan-Yorke dimension are shown in Table 1 along
with initial conditions that are close to the attractor. As is usual
for strange attractors from three-dimensional autonomous systems
with only a few quadratic nonlinearities, the attractor dimension
is only slightly greater than 2.0, the largest of which is NEjg with
Dy = 2.3224. All the cases appear to approach chaos through
a succession of period-doubling limit cycles, a typical example of
which (NEg) is shown in Fig. 2. Case NE4 is the simplest dissipative
flow with no equilibrium in the sense that it has only six terms
and a single quadratic nonlinearity. Along with the other cases in
the table, it is worthy of further study.
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