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Abstract: Attractor merging can exist in chaotic systems with some kind of

symmetry, which makes it possible to form a four-wing attractor from a

bistable system. A relatively simple such case is described, which has robust

chaos varying from a pair of coexisting symmetric single-wing attractors to a

double-wing butterfly attractor, and finally to a four-wing attractor. Basic

dynamical characteristics of the system are demonstrated in terms of equi-

libria, Jacobian matrices, Lyapunov exponents, and Poincaré sections. From

a broad exploration of the dynamical regions, we observe robust chaos with

embedded Arnold tongues of periodicity in selected parameter regions. The

chaotic system with a wing structure has four nonlinear quadratic terms, one

of the coefficients of which is a hidden isolated amplitude parameter, by

which one can control the amplitude of two of the variables. The corre-

sponding chaotic circuit with an amplitude-control knob is designed and

implemented, which generates a four-wing attractor with adjustable ampli-

tude.
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1 Introduction

The study of chaotic behavior in nonlinear systems has attracted considerable

attention due to the many possible applications in various fields of science and

technology. Much research has been devoted to searching for new chaotic systems

of autonomous ordinary differential equations (ODEs) with particular desired

dynamic properties. With improvements in circuit realization technology through

the development of integrated circuits, multi-scroll [1, 2, 3] and multi-wing chaotic

systems have aroused special interest, especially four-wing attractors [4, 5, 6, 7, 8]

and grid multi-wing chaotic systems [9, 10, 11]. It is known that wing attractors

from a chaotic system generally arise from some symmetry, and when that

symmetry is broken, the chaotic flow may drop into a different petal of the wing.

The study of wing-structure attractors could possibly be used in pattern identifica-

tion and contribute to the knowledge of structure dynamics. Many four-wing

chaotic systems have three quadratic terms. However, additional nonlinear terms

can make the chaotic attractor more elegant and have a higher dimension. In this

paper, we introduce a new chaotic system with four quadratic terms that displays an

elegant four-wing fractal structure.

As in many systems with some kind of symmetry, it is relatively common to

find multistability and coexisting attractors in some regions of parameter space

[12, 13, 14, 15, 16]. However, the new system introduced here has some distinct
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features: (1) It generates a four-wing chaotic attractor with fractal structure for some

choices of the parameters. (2) In a selected parameter region, it displays robust

chaos with periodic Arnold tongues, and the strange attractor varies among a

symmetric pair of single-wing attractors, a double-wing butterfly attractor, and a

four-wing attractor. (3) There is a hidden parameter in the coefficient of a quadratic

nonlinearity in the system, which is unlike chaotic systems with absolute value

nonlinearities [17, 18, 19], whereby an obvious constant term controls the ampli-

tude of all variables. For the circuit design of a chaotic system, a linear scaling of

the variables is usually necessary to avoid saturation of the analog multipliers and

operational amplifiers. In the new system, the coefficient of one quadratic term in

the equation that contains a constant provides amplitude control of two of the

variables without changing the Lyapunov exponent spectrum. Based on this

property, an amplitude controllable circuit was designed and constructed.

In Sec. 2, we present the novel chaotic attractor with elegant four-wing

structure from three first-order autonomous ODEs. Numerical results involving

phase portraits, Lyapunov exponents, and Poincaré sections are presented. In

Sec. 3, basic dynamical properties of the four-wing system are discussed including

equilibria, Jacobian matrices, and symmetry characteristics. In Sec. 4, the dynami-

cal region is explored in a selected parameter space, and the route from a single-

wing attractor to the four-wing structure is shown along with the attractor basins. In

Sec. 5, the hidden amplitude parameter is shown, and the corresponding amplitude-

adjustable chaotic circuit is designed and implemented. The conclusions are

summarized in Sec. 6.

2 Four-wing chaotic attractor

Based on existing research with four-wing chaotic systems, and with the motivation

of including more cross-product terms and a constant term to generate a novel four-

wing chaotic structure, the following set of three first-order, autonomous ODEs

with four quadratic terms was considered:

x� ¼ ax þ y þ yz;

y� ¼ �xz þ yz;

z� ¼ �z � mxy þ b;

8><
>:

ð1Þ

System (1) has four quadratic nonlinearities without any linear term in the

second dimension of the equations, which makes it different from most other

common systems. The four-wing chaotic attractor with a ¼ b ¼ m ¼ 1 is displayed

in various views in Fig. 1 for initial conditions of ðx0; y0; z0Þ ¼ ð1;�1; 1Þ. The
attractor resembles two groups of butterfly shapes, which is different from other

reported four-wing systems. Fig. 1 shows that the new four wings are built in

different ways. Two of them are like auxiliary wings, and the other two are like

master wings with the two groups extending in different directions.

Lyapunov exponents are the average exponential rates of divergence or con-

vergence of state space trajectories. The Lyapunov exponents of the four-wing

chaotic system (1) are found to be L1 ¼ 0:409, L2 ¼ 0, L3 ¼ �1:773. The system
has a relatively high Kaplan-Yorke dimension of DKY ¼ 2:231. Fig. 2 shows the
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Poincaré sections in planes where y ¼ �0:7 and z ¼ �3:0, respectively. The

Poincaré section in Fig. 2(b) contains four main branches and many twigs which

show that it is a four-wing chaotic attractor with fractal structure.

3 Basic properties

3.1 Equilibria

The equilibria of the new four-wing system (1) can be found from

(a) (b)

(c) (d)

Fig. 1. Four-wing chaotic attractor, (a) 3-D view, (b) x-y plane, (c) x-z
plane, (d) y-z plane.

(a) (b)

Fig. 2. Poincaré maps in planes where (a) y ¼ �0:7, (b) z ¼ �3:0

© IEICE 2015
DOI: 10.1587/elex.12.20141116
Received November 27, 2014
Accepted January 20, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

4

IEICE Electronics Express, Vol.12, No.4, 1–12



x� ¼ ax þ y þ yz ¼ 0;

y� ¼ �xz þ yz ¼ 0;

z� ¼ �z � mxy þ b ¼ 0;

8><
>:

ð2Þ

When m > 0, the system possesses five equilibrium points, i.e.,

P1 ¼ ð0; 0; bÞ;
P2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
aþbþ1p ffiffiffi

m
p ;�

ffiffiffiffiffiffiffiffiffiffi
aþbþ1p ffiffiffi

m
p ;�ða þ 1Þ

� �
;

P3 ¼
ffiffiffiffiffiffiffiffiffiffi
aþbþ1p ffiffiffi

m
p ;

ffiffiffiffiffiffiffiffiffiffi
aþbþ1p ffiffiffi

m
p ;�ða þ 1Þ

� �
;

P4 ¼ �
ffiffi
b

pffiffiffiffiffi
ma

p i;
ffiffiffiffi
ab

p ffiffiffi
m

p i; 0
� �

;

P5 ¼
ffiffi
b

pffiffiffiffiffi
ma

p i; �
ffiffiffiffi
ab

pffiffiffi
m

p i; 0
� �

;

ð3Þ

For a, b, m positive, two of these points are imaginary, and three are real. These

equilibria are symmetric about the z axis. When a ¼ b ¼ m ¼ 1, the corresponding

equilibrium points are P1 ¼ ð0; 0; 1Þ, P2 ¼ ð� ffiffiffi
3

p
;� ffiffiffi

3
p

;�2Þ, P3 ¼ ð ffiffiffi
3

p
;

ffiffiffi
3

p
;�2Þ,

P4ð�i; i; 0Þ and P5ði;�i; 0Þ. An interesting feature is that the system has only three

real equilibrium points, which is unusual and unexpected for a four-wing attractor.

3.2 Jacobian matrices

The Jacobian matrix of system (1) is given by

J ¼
a 1 þ z y

�z z y � x

�my �mx �1

2
64

3
75 ð4Þ

For a ¼ b ¼ m ¼ 1, the Jacobian matrix at the first equilibrium P1 ¼ ð0; 0; 1Þ is
given by

J ¼
1 1 þ z y

�z z y � x

�y �x �1

2
64

3
75 ¼

1 2 0

�1 1 0

0 0 �1

2
64

3
75 ð5Þ

From j�I � J1j ¼ 0, the eigenvalues of the Jacobian matrix J1 are �1 ¼ �1:0000,
�2 ¼ 1 þ 1:4142i, and �3 ¼ 1 � 1:4142i. Here �1 is a negative real number, while �2
and �3 are a pair of complex conjugate eigenvalues with positive real parts.

Consequently, the equilibrium P1 is a saddle-focus, and the system (1) is unstable

at the P1 equilibrium point.

For the second equilibrium P2 ¼ ð� ffiffiffi
3

p
;� ffiffiffi

3
p

;�2Þ, the eigenvalues are

�1 ¼ �2:4082, �2 ¼ 0:2041 þ 2:2229i, and �3 ¼ 0:2041 � 2:2229i. For the third

equilibrium P3 ¼ ð ffiffiffi
3

p
;

ffiffiffi
3

p
;�2Þ, the eigenvalues are identical to those of P2.

Consequently, all the real equilibrium points are saddle-foci, and the system (1)

is unstable at those points. Also the eigenvalues of the Jacobian matrix at the

imaginary equilibrium points were calculated. These eigenvalues are the same,

�1 ¼ 1:5874, �2 ¼ �0:7937 þ 1:3747i, and �3 ¼ �0:7937 � 1:3747i where �1 is a

positive real number, and �2 and �3 are a pair of complex conjugate eigenvalues

with negative real parts, which indicates that these two imaginary equilibrium

points are saddle points.
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3.3 Symmetry characteristics

System (1) is symmetric with respect to the z-axis, which can be easily shown by

the coordinate transformation ðx; y; zÞ ! ð�x;�y; zÞ. Equilibrium points P2, P3, P4,

and P5 are also symmetric with respect to the z-axis. The rotationally invariant

chaotic system suggests that there is a hidden amplitude parameter m in the third

dimension of the equation as will be shown later.

4 Robust chaos in a mixture of wing attractors with Arnold tongues

Since system (1) has eight terms, it has four bifurcation parameters with four of the

coefficients set to unity by a linear rescaling of x, y, z, and t. To further explore the

special dynamics of the system, we show in Fig. 3 the dynamical regions as

determined from the Lyapunov exponent spectra in the space of the parameters a

and b with m ¼ 1. For this plot, initial conditions were chosen randomly from a

Gaussian distribution of mean zero and variance one for each of the 800 � 800

pixels.

From the dynamical regions, we conclude the following:

(1) In the parameter space of a½0; 20� and b½�10; 10� with m ¼ 1, the chaotic state

is overwhelmingly dominant but with windows of periodicity, suggesting that the

system has robust chaos in this parameter space.

(2) There are two special areas in the figure, a green triangular area in the lower-left

corner representing point attractors and a cluster of blue bands of Arnold tongues in

the upper-right representing limit cycles. For the first equilibrium point of the

system, the characteristic equation is �3 þ ð1 � a � bÞ�2 þ ðab � a þ b2Þ� þ ab þ
bðb þ 1Þ ¼ 0, while for the second and third equilibrium points, the characteristic

equation is �3 þ 2�2 þ ða þ b þ 2Þ� þ 2ða þ b þ 1Þða þ 1Þ ¼ 0. Thus according to

Fig. 3. Regions of various dynamical behaviors as a function of the
bifurcation parameters a and b with m ¼ 1. The chaotic regions
are shown in red, the periodic regions are shown in blue, and
the fixed-point regions are shown in green.
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the Routh-Hurwitz stability criterion, there is a boundary given by a ¼ 0:5ð�b �
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb þ 1Þ2 þ 4Þ

p
that divides the plot into regions of unstable saddle-focus and

stable focus. The limit cycles in different tongues have the attractors of a symmetric

pair of limit cycles or one symmetric one, as shown in Fig. 4(a)–(b). Different types

of limit cycles change alternately in different Arnold tongues.

(3) There is a slight blue gap between green and red, which suggests that the

system has a typical bifurcation from point attractor to limit cycle to chaos in that

region.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Phase portrait in the y-z plane with m ¼ 1 (red and green with
symmetric initial conditions ðx0; y0; z0Þ ¼ �1;�1; 1 (a) limit
cycles in Arnold tongues (a ¼ 4:5, b ¼ 8) (b) limit cycles in
Arnold tongues (a ¼ 8, b ¼ 8) (c) double-wing butterfly
attractor (a ¼ 10, b ¼ 0) (d) point attractors (a ¼ 0:11, b ¼ 2)
(e) symmetric limit cycle (a ¼ 0:12, b ¼ 2) (f ) four-wing
attractor (a ¼ 0:45, b ¼ 2).
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(4) The system displays three routes to a wing attractor, each of which arises from a

specific bistability. The first approach to a wing attractor is from coexisting point

attractors to a strange attractor directly. In this case, the coexisting point attractors

suddenly lose their stability, and the system evolves into a double-wing attractor.

This phenomenon happens in those areas with immediate connection between

green and red, typically b ¼ 0. A robust double-wing butterfly attractor is generated

by this method, as shown in Fig. 4(c).

(5) This route is indicated by a limit cycle bubble on the top of the green triangle

with a typical value b ¼ 2. Here a symmetric limit cycle is born from two

coexisting point attractors and then suddenly bursts into a four-wing attractor, as

shown in Fig. 4(d)–(f ).

(6) The third route is indicated by another limit cycle bubble attached beside the

top of the green triangle with a typical value a ¼ 11. With an increasing b, the

system displays bistability of limit cycles and a symmetric pair of single-wing

strange attractors. The symmetric pair of single-wing attractors merge suddenly to a

double-wing butterfly structure. With a further increase of b, the double-wing

structure suddenly bursts into a four-wing attractor with the catalysis of limit cycles

in Arnold tongues. The coexisting single-wing attractors and their attractor basins

are shown in Fig. 5(a)–(b). In the cross-section of the fractal basins of attraction in

the x ¼ 0 plane, the black lines are cross sections of the corresponding strange

attractors that almost touch their basin boundaries.

(7) The dotted area at the upper-right of Fig. 3 suggests that there is multistablity

with different types of attractors. At large a and b the four-wing strange attractor

and a symmetric pair of limit cycles share the basin of attraction, as shown in

Fig. 6(a)–(b). In the cross-section of the fractal basins of attraction in the x ¼ 0

plane, the black lines are cross sections of the corresponding four-wing strange

attractors. Note that much of the plot contains regions where the three colors are

closely intermingled suggesting the existence of riddled basins [20]. This behavior

persists in a 30-times zoom of the plot (not shown), and thus it does not appear to

be fractal structure. Appropriately chosen, arbitrarily close initial conditions typi-

cally lead to different attractors.

(a) (b)

Fig. 5. Coexisting symmetric pair of single-wing strange attractors
when a ¼ 11, b ¼ �9 (a) Phase portrait in the y-z plane (red and
green with symmetric initial conditions ðx0; y0; z0Þ ¼ 0;�1; 0
(b) Cross section for x ¼ 0 of the basins of attraction.
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5 Hidden amplitude parameter and its application in a chaotic circuit

5.1 Hidden amplitude parameter in the coefficient of one quadratic

term

The chaotic system with a specific wing structure attractor arises from a system

with four quadratic terms, three linear terms, and one constant term. If the

parameter m varies, all the equilibria will change correspondingly. The first two

coordinates (x and y) of all equilibrium points will scale according to 1=
ffiffiffiffi
m

p
without

any change in the third coordinate (z). This special coordinate change of the

equilibrium points will not influence the eigenvalues because the characteristic

equation is independent of m. This leads to the important result that parameter m

changes the amplitude of x and y, while the Lyapunov exponent spectrum remains

constant. Thus m is a hidden amplitude parameter in this system, and it only adjusts

the amplitude of the variables generated and will not lead to any bifurcations [21].

The proof follows.

Let A ¼ km, u ¼ x=
ffiffiffi
k

p
, v ¼ y=

ffiffiffi
k

p
, w ¼ zðk > 0Þ, so that the system becomes

u� ¼ au þ v þ vw;

v� ¼ �uw þ vw;

w� ¼ �w � Auv þ b;

8><
>:

ð6Þ

which has the same form as Eq. (1). Thus the parameter m controls the amplitude of

variables x and y according to 1=
ffiffiffiffi
m

p
. When parameter m changes by a factor of

k, the variables x and y will decrease by 1=
ffiffiffi
k

p
while the amplitude of z remains

unchanged. Furthermore, the Lyapunov exponent spectrum remains unchanged.

5.2 Four-wing attractor circuit based on the hidden amplitude

parameter

Here a new amplitude-adjustable four-wing chaotic circuit is designed based on this

special hidden amplitude parameter. Considering the saturation property of the

analog multipliers and the operational amplifiers, usually we reduce the state

(a) (b)

Fig. 6. Coexisting symmetric pair of single-wing strange attractors
when a ¼ 16:5, b ¼ 10 (a) Phase portrait of in the y-z plane
(blue for initial conditions ðx0; y0; z0Þ ¼ 1; 0; 1 red and green for
symmetric initial conditions ðx0; y0; z0Þ ¼ �1;�2:5; 1 (b) Cross
section for x ¼ 0 of the basins of attraction.
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variables by a linear transformation to avoid saturation. In this case, well known

regular chaotic design procedures before designing the chaotic circuit are applied.

For example, let u ¼ x, v ¼ y=2, and w ¼ z such that the scaled equations are given

by

u� ¼ au þ 2v þ 2vw;

v� ¼ � 1

2
uw þ vw;

w� ¼ �w � 2muv þ b;

8>><
>>:

ð7Þ

According to the above equations, we can design a normal analog circuit and

output the chaotic signal for comparison with numerical solutions of the equations.

However, according to the analysis in Fig. 1, the ranges of variables x and z (in

volts) satisfy the requirement of not saturating the analog multipliers and opera-

tional amplifiers, while the variable y is out of the range of the hardware. So, here

we construct the circuit in Fig. 7 depending on the initial equation (1), by applying

a potentiometer R7 to realize the hidden amplitude parameter m to change the range

of the variables x and y. The circuit equations in terms of the circuit parameters have

the form

x� ¼ 1

R1C1

x þ 1

R2C1

y þ 1

R3C1

yz;

y� ¼ � 1

R4C1

xz þ 1

R5C2

yz;

z� ¼ � 1

R6C3

z � 1

R7C3

xy þ V3

R8C3

8>>>>>>><
>>>>>>>:

ð8Þ

Fig. 7. Four-wing attractor circuit with amplitude parameter for
amplitude adjustment
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The circuit consists of three channels to realize the integration, addition, and

subtraction of the state variables x, y, and z, respectively. The operational amplifier

TL081/TI and its peripheral circuit can realize the addition, inversion and integra-

tion, and the analog multiplier AD633/AD can realize the nonlinear product

operation. The state variables x, y, and z in Eq. (1) correspond to the state voltages

of the three channels, respectively. When the system parameters are a ¼ b ¼
m ¼ 1, the circuit elements have the values R1 ¼ R2 ¼ R6 ¼ R8 ¼ 400 kΩ,

R3 ¼ R4 ¼ R5 ¼ R7 ¼ 40 kΩ, R9 ¼ R10 ¼ R11 ¼ R12 ¼ 20 kΩ, and V3 ¼ 1V.

To obtain a stable phase portrait in the oscilloscope, we select the capacitors

C1 ¼ C2 ¼ C3 ¼ 1 nF, which only increases the oscillation frequency of the

circuit. Note that the dimension of the products in Eq. (8) does not correspond

with the rest of the equation, which is because there is an implied voltage factor

coming from the analog multiplier used in the circuit. We set the potentiometer R7

small enough to keep the amplitude of variables x and y within the limit of the

hardware.

For the sake of comparison, we examine the size and shape of the attractors

produced by the circuit as shown in the oscilloscope traces in Fig. 8 with the

solutions of Eq. (1) in the x-y and x-z planes shown in Fig. 1. It is observed that the

range of the variables x, y, and z are ½�10; 10�, ½�20; 20�, and ½�11; 9�, respec-
tively.

To decrease the range of variables x, and y, the only needed step is to change

the value of potentiometer R7 gradually. For example, make the value of potenti-

ometer R7 a quarter of the original, i.e. R7 ¼ 10 kΩ. The attractors in the x-y, x-z

plane as shown in Fig. 8 are half the size of those in Fig. 1 as expected. Circuit

experiment outputs show good agreement with the numerical analysis and dem-

onstrate that the parameter m is a hidden amplitude parameter, and correspondingly

the potentiometer R7 can control the amplitude of signals x and y, while the signal z

remains in the same range as shown in Fig. 8, oscilloscope traces of system (1), at

m ¼ 4ð2V=DivÞ.

(a) (b)

Fig. 8. (a) Attractor in the x-y plane, (b) x-z plane.
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6 Conclusions

A new four-wing attractor is constructed and analyzed. This four-wing chaotic

system possesses four quadratic terms and three real equilibrium points. A

distinguishing property of the system is that there are diverse routes to the wing

attractor through different bistabilities. The route can be from two existing stable

points to a butterfly directly, or from a symmetric limit cycle to a four-wing

attractor that degrades to a butterfly, or from a coexisting symmetric pair of limit

cycles to two coexisting single-wing attractors, which then form a double-wing

butterfly that develops a four-wing structure. The chaos with different numbers of

wings occupies most regions of parameter space. There are Arnold tongues of limit

cycles stretching into the chaotic region, which shows that limit cycles are

embedded in the chaotic region. Furthermore, the system has one coefficient of a

quadratic term that is a hidden parameter and that controls the amplitude of two of

the state variables while the system remains chaotic. A chaotic circuit is designed

and constructed without linear transformation for selecting proper values of the

resistors. By controlling the value of a potentiometer, the range of two signals

generated by the circuit can be smoothly controlled, and the scale of the four-wing

attractor is changed correspondingly. Such a four-wing attractor not only contrib-

utes an additional example of the rarely-found four-wing chaotic systems, but it is

also potentially useful in chaos applications.
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