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For a dynamical system described by a set of autonomous ordinary differential equations, an
attractor can be a point, a periodic cycle, or even a strange attractor. Recently, a new chaotic
system with only one stable equilibrium was described, which locally converges to the stable
equilibrium but is globally chaotic. This paper further shows that for certain parameters, besides
the point attractor and chaotic attractor, this system also has a coexisting stable limit cycle,
demonstrating that this new system is truly complicated and interesting.
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1. Introduction

Many dynamical systems in the physical world are
by nature dissipative. Such dissipation may come
from internal friction, thermodynamic loss, energy
or material loss, among many causes. Orbits of a
dissipative dynamical system will shrink into zero-
volume subsets in the state space as time goes to
infinity.

For a dynamical system described by a
set of autonomous ordinary differential equations
(ODEs), x = f(x), x € R", if f(x.) = 0 has a
real solution, then x, is called an equilibrium of the
dynamical system.

An equilibrium is said to be hyperbolic if all
eigenvalues of the system’s Jacobian matrix eval-
uated at the equilibrium have nonzero real parts.
The signs of these real parts of the eigenvalues
determine the stability of the equilibrium. The
Hartman—Grobman Theorem [Teschl, 2012] states
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that the behavior of a dynamical system near a
hyperbolic equilibrium is topologically equivalent to
(i.e. qualitatively the same as) the behavior of its
linearized model in a neighborhood of the equilib-
rium. Thus, if the equilibrium is stable, it will be
a point attractor of the system, which attracts all
nearby orbits.

Besides the zero-dimensional point attractors,
there are also one-dimensional periodic-cycle attrac-
tors, called limit cycles, in which an orbit circles
around in the state space. Although point attrac-
tors and limit cycles are the most common attrac-
tors with integer dimension and regular structure,
attractors can also be complicated point sets with
fractal structure. An attractor is said to be strange if
it has a noninteger dimension, and examples of such
strange attractors are manifest [Sprott, 1993, 1994,
1997; Sprott & Linz, 2000; Lorenz, 1963; Chen &
Ueta, 1999; Ueta & Chen, 2000).
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Most systems with strange attractors have at
least one unstable equilibrium. However, in addition
to the aforementioned Sprott systems [Sprott, 1993,
1994, 1997; Sprott & Linz, 2000], the Lorenz system
[Lorenz, 1963] and the Chen system [Chen & Ueta,
1999; Ueta & Chen, 2000] both have two unstable
saddle-foci and one unstable node, which can gen-
erate a two-wing butterfly-shaped strange attrac-
tor, usually referred to as a chaotic attractor, for its
special properties characterized by sensitive depen-
dence on initial conditions. Of course, it is known
that there are also strange but nonchaotic attrac-
tors, depending on the definitions used.

An interesting question is whether a simple
system (say, one that is three-dimensional and
autonomous with only quadratic nonlinearities) can
have all three of these attractors concurrently. What
follows is just such an example.

2. Coexistence of Point, Periodic
and Strange Attractors
A chaotic system with only one equilibrium, a sta-

ble node-focus, was introduced in [Wang & Chen,
2012]. This system was found by adding a nonzero

Three—dimensional view

constant a to case E in [Sprott, 1994] as follows:

T=yz+a
g=1’—y (1)
z=1—A4x,

when a # 0, the stability of the single equilibrium
is fundamentally altered. Specifically, when a > 0,
system (1) possesses only one stable equilibrium:

11
P(zp,yp, 28) = (Z’E’lﬁa) (2)

Interestingly, this stable equilibrium can coex-
ist peacefully with a strange attractor, as reported
in [Wang & Chen, 2012]. This means that both a
point attractor and a strange attractor dominate
the system dynamics in a region of the state space,
so it is easy to imagine that there should be an
unstable boundary between the two attractors. Will
these two basins of attraction have a smooth bound-
ary, or will they be intertwined in a fractal or
other type of complicated manner? The following
discovery makes this question even more fascinat-
ing and harder to answer.
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Fig. 1. Coexistence of point, periodic, and strange attractors of system (1) with a = 0.01; the point attractor (green)

is generated from initial conditions (0.2,0,0), the periodic attractor (red) from initial conditions (1,1,1), and the strange

attractor (blue) from initial conditions (1,1,0).
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In addition to having a point attractor and a Table 1. Lyapunov exponents with different initial values.
strange attractor, system (1) is now found to have
a periodic attractor as well when a is in the vicin-
ity of 0.01, as shown in Fig. 1, giving rise to the (0.2, 0, 0) —0.033; —0.033; —0.933 0

Initial Conditions Lyapunov Exponents Dimension

coexistence of point, periodic and strange attrac- (1’ 17 1) 0-020? —0.071L; *(1)-9(259 ; -
tors. The point attractor (green) is generated from (1,1,0) 0.060; 0.000; —1.060 0
(a) Bifurcation diagram with initial values (0.2, 0, 0)
4 T T T T T
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a
(b) Bifurcation diagram with initial values (1, 1, 1)
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a
(c) Bifurcation diagram with initial values (1, 1, 0)
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Fig. 2. Bifurcation diagram versus parameter a, with different initial conditions, showing a period-doubling route to chaos.
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initial conditions (zg,yo,20) = (0.2,0,0), the peri-
odic attractor (red) from initial conditions (1,1, 1),
and the strange attractor (blue) from initial condi-
tions (1,1,0).

The Lyapunov exponents for a = 0.01 accurate
to three digits are shown in Table 1.

Figure 2 shows the bifurcation diagrams ver-
sus parameter a with different initial conditions,
demonstrating a period-doubling route to chaos.
These diagrams also show that, at « = 0.01, the
three different initial conditions lead to three differ-

ent attractors.

Fig. 3. Basins of attraction of the point, periodic, and strange attractors of system (1), all with @ = 0.01 on three cross-
sections in the plane containing the equilibrium point, marked by green, red, and blue, respectively. The strange attractor
resides in the blue basin; the periodic cycle has several points in the red basin, and the equilibrium point is a single point in
the green region. The black points are cross-sections of the attractors.
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3. Basins of Attraction

The three different types of attractors coexist
peacefully in this simple system, with each dom-
inating the dynamics in a different part of the
state space. Their basins of attraction represent a
mathematically-involved subtle issue, because it is
well known that even for multiple point attractors,
the basin boundaries can be fractal.

It turns out that the boundaries of the basins
of attraction of system (1) do have a fractal struc-
ture, three cross-sections of which in the planes con-
taining the equilibrium point are shown in Fig. 3.
On these sections, the basins of attraction of the
point, periodic, and strange attractors of system
(1) with a = 0.01 are indicated by green, red, and
blue, respectively. The strange attractor resides in
the blue basin; the periodic cycle has several points
in the red basin, and the equilibrium has a single
point in the green region. In this figure, the black
points are cross-sections of the respective attrac-
tors. As the parameter a is gradually changed, the
basins of attraction also gradually change, which
makes the estimate of the basin boundaries difficult
but interesting.

4. Discussions

An attractor is defined as the smallest attracting
point set that cannot be itself decomposed into two
or more subsets with distinct basins of attraction.
This restriction is necessary since a dynamical sys-
tem may have different types of multiple attractors,
each with its own basin of attraction.

Most systems have only one attractor or one
single type of attractor. Others may have two dif-
ferent types of coexisting attractors, most likely
strange attractors and periodic cycles. It is inter-
esting and striking to see that the simple system
reported here has all three different common types
of attractors coexisting side by side. We do not
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have a definite answer to the question about the
mechanism for the birth and death of these differ-
ent types of attractors, except to note that classi-
cal local analytic theory does not apply because the
unique equilibrium point of the system is not hyper-
bolic. One must then resort to the theories of global
bifurcation and chaos [Wiggins, 1988], which leaves
an important yet challenging theoretical as well as
technical problem for future research.
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