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Abstract: A novel chaotic attractor with a fractal wing structure is proposed and analyzed in terms of its basic

dynamical properties. The most interesting feature of this system is that it has complex dynamical behavior, especially

coexisting attractors for particular ranges of the parameters, including two coexisting periodic or strange attractors that

can coexist with a third strange attractor. Amplitude and phase control methods are described since they are convenient

for circuit design and chaotic signal applications. An appropriately chosen parameter in a particular quadratic coefficient

can realize partial amplitude control. An added linear term can change the symmetry and provide an accessible knob to

control the phase polarity. Finally, an amplitude-phase controllable circuit is designed using PSpice, and it shows good

agreement with the theoretical analysis.
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1. Introduction

Chaotic systems and their dynamical behavior have inspired the interest of researchers because of their potential

application in many fields, especially in the communication and information industries. Chaotic attractors are

a signature of chaos and reveal its character. Recently, strange attractors with wing structures [1–11], such

as the four-wing attractor [2–7] and multiwing attractor [8–11], have been of interest because of their elegant

symmetry and multiple possible extensions. Furthermore, a chaotic flow generally has complexity and diversity.

Some nonlinear dynamical systems exhibit hysteresis and coexisting attractors [12,13]. Wing structures not only

consist of the main attractor branches, but also provide a bond between different parts of the phase trajectory.

In this paper, we propose a novel chaotic attractor different from other ones [14–16], which exhibits four wing-

like branches with a bond that has a double-wing structure. In this sense, the wing structure can penetrate

the different regions of the attractor and the transition bonds. For selected parameters, two and even three

coexisting attractors are observed.

On the other hand, adapting a chaotic system to engineering applications often requires synchronization

[17–19] and amplitude-phase control [20,21]. However, the amplitude and the phase control parameters have

not been discussed in chaotic systems with quadratic nonlinearity. In this paper, to achieve adequate amplitude
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and phase control, we introduce a parameter in a quadratic coefficient to achieve partial amplitude control and

to change the symmetry of the chaotic system to provide phase polarity control. A corresponding chaotic circuit

is designed in PSpice, which confirms the theoretical analysis.

2. Novel chaotic attractor

Liu and Chen proposed a relatively simple three-dimensional continuous-time autonomous chaotic system [22]

as follows. 
ẋ = ax− yz,

ẏ = −by + xz,

ż = −cz + xy,

(1)

This system possesses multiple symmetries in the equations and dynamical flow. Linear and nonlinear terms

can be added to change the symmetry and behavior. We introduce a linear term – by in the third dimension of

Eq. (1) to control the dynamics. 
ẋ = x− yz,

ẏ = −ay + xz,

ż = −by − cz + xy,

(2)

When a = 2.5, b = 3.75, and c = 1.125, system (2) displays a novel chaotic attractor with a wing structure as

shown in Figure 1 with initial conditions of (x0 , y0 , z0) = (0, 1, –1). The equations are solved with MATLAB

using a fourth-order Runge–Kutta integrator with a fixed time step of 0.005. The added linear term is necessary

to produce a real four-wing chaotic system. The calculated Lyapunov exponents are L1 = 0.2712, L2 = 0, and

L3 = –2.8962, and the Kaplan–Yorke dimension is DKY = 2 – L1 /L3 = 2.0936.

Figure 2 shows cross-sections of the attractor in the planes x = 3 and y = –3. These sections show six

main branches, two of which consist of subbranches in what appears to be a fractal structure as expected for a

strange attractor.

3. Basic dynamical properties

3.1. Equilibria

System (2) has five equilibria that be can be found from the following.


x− yz = 0,

−ay + xz = 0,

−by − cz + xy = 0,

(3)

For α = b
2 , β =

√
ab2+4a2c
2
√
a

, µ = b
2
√
a
, ω =

√
ab2+4a2c

2a , the equilibria are P1 = (0, 0, 0), P2 = (α + β , –

µ− ω,−
√
a), P3 = (α+ β , µ+ ω ,

√
a), P4 =( α− β , –µ+ ω , −

√
a), and P5 = (α− β , µ− ω ,

√
a). When

a = 2.5, b = 3.75, and c = 1.125, the corresponding equilibrium points are P1 = (0, 0, 0), P2 = (4.3906,

–2.7768, –1.5811), P3 = (4.3906, 2.7768, 1.5811), P4 = (–0.6406, 0.4051, –1.5811), and P5 = (–0.6406, –0.4051,

1.5811). Equilibrium points P2 and P3 , and P4 and P5 are symmetrical about the x-axis.
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Figure 1. Chaotic attractor: (a) three-dimensional view, (b) x− y phase plane, (c) x− z phase plane, (d) y− z phase

plane.
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Figure 2. Cross-sections of the attractor in planes where (a) x = 3, (b) y = –3.
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3.2. Jacobian matrices

The Jacobian matrix for system (2) at P1 = (0, 0, 0) is:

J1 =

 1 −z −y

z −a x

y −b+ x −c

 =

 1 0 0

0 −2.5 0

0 −3.75 −1.125

 . (4)

From |λI − J1| = 0, the eigenvalues of the Jacobian matrix J1 are λ1 = 1, λ2 = –1.125, and λ3 = –2.5. Since

λ1 is a positive real number and the other two are negative real numbers, the equilibrium P1 is a saddle-node.

For the equilibrium P2 , the Jacobian matrix is:

J2 =

 1 −z −y

z −a x

y −b+ x −c

 =

 1 1.5811 2.7768

−1.5811 −2.5 4.3906

−2.7768 0.6406 −1.125

 . (5)

Here the eigenvalues are λ1= –3.8715, λ2 = 0.6232 + 3.3200i , and λ3 = 0.6232 – 3.3200i . λ1 is a negative

real number, and λ2 and λ3 are a pair of complex conjugate eigenvalues with positive real parts. Therefore, the

equilibrium P2 is a saddle-focus. For the third equilibrium P3 , the eigenvalues of J3 are identical to J2 , and

thus it is also a saddle-focus. For the equilibrium points P4 and P5 , the eigenvalues are identical and given by

λ1 = –3.4465, λ2 = 0.4107 + 1.3044i , and λ3 = 0.4107 – 1.3044i , which is also a saddle-focus. Thus, system

(2) is unstable at all equilibrium points.

3.3. Symmetry characteristics

System (1) has a unique rotational symmetry with respect to each of the axes as evidenced by its invariance under

the coordinate transformations (x, y, z) → (x,−y,−z),(x, y, z) → (−x, y,−z), and(x, y, z) → (−x,−y, z),

respectively. An added linear term in any dimension can change the symmetry. The term –by in system (2)

selects a specific symmetry with respect to the x-axis since the equations are then invariant only under the

coordinate transformation (x, y, z) → (x,−y,−z). All equilibrium points are also symmetric with respect to

the x-axis. Thus, the added term changes the symmetry and provides an accessible knob to control the phase

polarity.

4. Amplitude-phase control and coexisting attractors

4.1. Amplitude control

Although it is possible to linearly rescale all the variables to avoid exceeding amplitude limitations of the

hardware, it turns out that partial amplitude control is achieved by adding a coefficient d in the quadratic term

–yz in the first dimension of system (2). 
ẋ = x− dyz,

ẏ = −ay + xz,

ż = −by − cz + xy,

(6)

If we take d → kd, x → x, y → y/
√
k, z → z/

√
k(k > 0) in Eq. (6), the resulting system is identical to system

(2), which means that parameter d can control the amplitude of variables y and z according to 1/
√
k while

leaving the variable x unchanged.
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The expected behavior is verified by numerical calculations as shown in Figure 3, which also shows that

to within numerical error, the Lyapunov exponent spectrum is independent of d , as desired. This works because

the first equation of system (6) has a single nonlinear term, and the second two equations are first-order in y and

z , suggesting a general principle. Conversely, d would be a bad parameter to choose for studying bifurcations.
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Figure 3. Amplitude parameter d adjusted the range of y and z without altering x: (a) x− d bifurcation diagram at

y = 0, (b) z − d bifurcation diagram at y = 0, (c) range of variables, (d) Lyapunov exponents.

4.2. Phase control and coexisting attractors

System (2) has three quadratic terms and four linear terms. Amplitude control parameters generally involve the

coefficient of a nonlinear term, while phase control involves the coefficient of a linear term. In system (2), phase

polarity can be controlled by changing the sign of b . The system is invariant to the transformation b → −b ,

x → −x , y → −y , z → z , and thus b controls the phase of xand yas shown in Figure 4 .

The bifurcation diagrams for x and y are reverse symmetrical, and the Lyapunov exponent spectrum is

symmetrical in the negative and positive regions, confirming that changing the sign of b reverses the polarity

of x and y , independent of whether the dynamics are chaotic. In particular, when b is chosen at –3.75 and
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3.75 with initial values (0, –1, –1) and (0, 1, –1), respectively, the phases of the chaotic signals x(t) or y(t)

are reversed as shown in Figure 5 despite the sensitive dependence on initial conditions. Generally, when phase

polarity is reversed, the signs of the corresponding initial conditions also need to be changed to remain within

the basin of attraction.
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Figure 4. Bifurcation dynamics at z = 0 when b varies in [–15, 15]: (a) x−b bifurcation diagram, (b) y−b bifurcation

diagram, (c) Lyapunov exponents (with initial values (0, –1, –1) and (0, 1, –1) in the negative and positive regions,

respectively).

Furthermore, system (2) has complex dynamical behavior in the region [–15, 15], including the existence

of coexisting attractors. Some chaotic attractors are shown in Figure 6 for various values of b . For b = 0.5

and an initial condition of (0, 1, ±5), system (2) has two two-wing attractors as shown in Figure 6a, where the

dashed line is for the initial condition (0, 1, 5). Moreover, when b 1.37, system (2) has two attractors, which are

periodic at b = 1.36. With an increase in b , the two two-wing structures coalesce and become a single four-wing

attractor as shown in Figures 6b and 6c. For b greater than about 6, system (2) has three attractors, two of

which are symmetric in z . For b = 7.8, the chaotic attractor coexists with two stable limit cycles as shown in

Figure 6d, where the limit cycles are shown with a dashed line for the initial conditions (7, ±13, ±23). When
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 Figure 5. Phase polarity control: (a) x versus t , (b) y versus t .
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Figure 6. Phase portrait in the y − z plane with initial values (0, 1, –5) for (a) b = 0.5, (b) b = 1.6, (c) b = 2.8, and

(d) b = 7.8.
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b = 9.5, system (2) has its maximum largest Lyapunov exponent of L1 = 0.9608 and Kaplan–Yorke dimension

of DKY = 2.276.

5. Chaotic circuit design

Amplitude control is important for circuit design and engineering applications because of hardware limitations.

To avoid saturating analog multipliers and operational amplifiers, the circuit signal amplitude is usually reduced

by a linear rescaling of the variables. However, many chaotic systems with symmetry, like system (2), include

a knob to achieve partial amplitude control. In such a case, total amplitude control requires additional control

only for the remaining uncontrolled variable(s).

In Figure 1, we see that all of the signals, x , y , and z , oscillate in the interval of (–20, 20). Considering

the amplitude control of y and z by the parameter d , only the variable x needs to be rescaled. Letting u =

x/2, v = y , and w = z , and then setting the original state variables x , y , z instead of the variables u, v, w ,

the rescaled phase-controllable system becomes the following.


ẋ = x− d

2yz,

ẏ = −ay + 2xz,

ż = ±by − cz + 2xy,

(7)

From Eq. (7), we design the amplitude-phase adjustable analog circuit shown in Figure 7. The circuit equations

in terms of the circuit parameters are:


ẋ = 1

R1C1
x− 1

R2C1
yz,

ẏ = − 1
R3C2

y + 1
R4C2

xz,

ż = ± 1
R5C3

y − 1
R6C3

z + 1
R7C3

xy,

(8)

The circuit consists of three channels to realize the integration, addition, and subtraction of the state variables

x , y , and z , respectively. The operational amplifier OPA404/BB and its peripheral circuit perform the addition,

inversion, and integration, and the analog multiplier AD633/AD performs the nonlinear product operation. The

state variables x, y , and z in Eq. (8) correspond to the state voltages of the three channels, respectively. For

the system parameters a = 2.5, b = 3.75, c = 1.125, and d = 4, the circuit element values are R1 = 40 kΩ,

R2 = R4 = R7 = 2 kΩ, R3 = 16 kΩ, R5 = 10.66 kΩ, R6 = 35.55 kΩ, R7 = 2 kΩ, and R8 = R9 = R10

= R11 = 10 kΩ. We select the capacitor C1 = C2 = C3 = 10 nF to obtain a stable phase portrait, which

only affects the time scale of the oscillation. Figure 8 shows the phase portraits predicted by PSpice circuit

simulation.

Unlike other chaotic circuits, here a potentiometer R2 is required to realize amplitude control. Generally,

we first put the resistance at an extreme value and then adjust the control knob so that the voltages satisfy the

requirements of the hardware. With a decrease in R2 , the amplitude of y and z decrease accordingly.

Furthermore, phase polarity control is implemented in the circuit. A polarity change of b is realized

by the switch that provides the appropriate feedback of the signal y . The corresponding phase trajectories

predicted by PSpice simulation are shown in Figure 9.
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Figure 7. Amplitude-phase adjustable chaotic circuit.
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Figure 8. Phase portraits of system (2) in PSpice simulation with initial values x(0) = 0, y (0) = –1, andz (0) = –1:

(a) attractor in the x− y plane (1 V/div), (b) x− z plane (1 V/div), and (c) y − z plane (1 V/div).
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Figure 9. Phase polarity of x and y reversed: (a) phase portrait in the x− y plane (1 V/div) and (b) x− z plane (1

V/div).

6. Conclusion

An added linear term in a pseudo four-wing system extracts the main four-wing structure with a special wing

bond and produces a novel chaotic attractor. Its dynamical behavior is analyzed, especially coexisting attractors

and amplitude and phase control. Due to the symmetry and system structure, a control method for amplitude

and phase is established by introducing a parameter in the coefficient of a specific nonlinear term to achieve

partial amplitude control, and a parameter is added in a linear term to alter the symmetry and allow phase

polarity control. The corresponding amplitude-phase adjustable circuit is designed. The amplitude of two signals

can be smoothly controlled, and the size of the corresponding attractors can be adjusted by a potentiometer.

Furthermore, the phase polarity can be controlled by a simple switch. The results of PSpice circuit simulation

show good agreement with the theoretical analysis. These special properties of the system provide a convenient

passage to realize amplitude adjusting and phase adjusting in electronic engineering, especially in communication

systems and radar systems. Even though the modified version seems more complicated and costly, the simple

knobs to realize amplitude and phase control actually save some extra circuits to construct a much more

complicated system.
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