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Using the Routh–Hurwitz stability criterion and a systematic computer search, 23 simple chaotic
flows with quadratic nonlinearities were found that have the unusual feature of having a coex-
isting stable equilibrium point. Such systems belong to a newly introduced category of chaotic
systems with hidden attractors that are important and potentially problematic in engineering
applications.
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1. Introduction

It is widely recognized that mathematically simple
systems of nonlinear differential equations can
exhibit chaos. With the advent of fast computers,
it is now possible to explore the entire parameter
space of these systems with the goal of finding
parameters that result in some desired characteris-
tics of the system. Recently there has been increas-
ing attention to some unusual examples of such
systems such as those having no equilibrium, sta-
ble equilibria, or coexisting attractors [Jafari et al.,
2013; Wei, 2011a, 2011b; Wang & Chen, 2012, 2013;
Wei & Yang, 2010, 2011, 2012; Wang et al., 2012a,
2012b].

Recent research has involved categorizing peri-
odic and chaotic attractors as either self-excited
or hidden [Kuznetsov et al., 2010, 2011a, 2011b;
Leonov & Kuznetsov, 2011a, 2011b, 2013a, 2013b;
Leonov et al., 2011a, 2011b, 2012]. A self-excited
attractor has a basin of attraction that is associ-
ated with an unstable equilibrium, whereas a hidden
attractor has a basin of attraction that does not
intersect with small neighborhoods of any equi-
librium points. Thus any dissipative chaotic flow
with no equilibrium or with only stable equilibria
must have a hidden strange attractor. Only a
few such examples have been reported in the
literature [Jafari et al., 2013; Wei, 2011a, 2011b;
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Wang & Chen, 2012, 2013; Wei & Yang, 2010, 2011,
2012; Wang et al., 2012a, 2012b]. Hidden attractors
are important in engineering applications because
they allow unexpected and potentially disastrous
responses to perturbations in a structure like a
bridge or an airplane wing.

The goal of this paper is to greatly expand the
list of known hidden chaotic attractors and to iden-
tify the mathematically simplest systems in which
they occur. Thus we perform a systematic computer
search for chaos in three-dimensional autonomous
systems with quadratic nonlinearities and a single
equilibrium that is stable according to the Routh–
Hurwitz criterion.

2. Simple Chaotic Flows with One
Stable Equilibrium

In the search for chaotic flows with a stable equi-
librium, we first focus on jerk systems. We consider

Table 1. 23 simple chaotic flows with one stable equilibrium.

Model Equations Equilibrium Eigenvalues LEs DKY (x0, y0, z0)

SE1 ẋ = y 0 −1.9548 0.0377 4

ẏ = z 0 −0.0226 0 2.0185 −2

ż = −x − 0.6y − 2z + z2 − 0.4xy 0 ±0.7149i −2.0377 0

SE2 ẋ = y 0 −0.5103 0.0804 −1

ẏ = z 0 −0.0198 0 2.1644 0

ż = −0.5x − y − 0.55z − 1.2z2 − xz − yz 0 ±0.9896i −0.4889 1

SE3 ẋ = y 0 −3.9641 0.0711 −2

ẏ = z 0 −0.0179 0 2.0175 0

ż = −3.4x − y − 4z + y2 + xy 0 ±0.9259i −4.0711 2.4

SE4 ẋ = y −1 −1.6942 0.0434 0.5

ẏ = z 0 −0.0029 0 2.0249 1

ż = −x − 1.7z + y2 + 0.6xy − 1 0 ±0.7683i −1.7434 0

SE5 ẋ = y −2.7 −0.9600 0.0136 −6.1

ẏ = z 0 −0.0200 0 2.0134 1

ż = −x − z − z2 + 0.4xy − 2.7 0 ±1.0204i −1.0136 1

SE6 ẋ = y −1 −1.0526 0.0638 −2.2

ẏ = z 0 −0.0237 0 2.0600 0.6

ż = −x − 2.9z2 + xy + 1.1xz − 1 0 ±0.9744i −1.0638 0

SE7 ẋ = y 0 −2.0000 0.0360 1

ẏ = −x + yz 0 −0.2500 0 2.0014 −0.7

ż = −2z − 8xy + xz − 1 −0.5 ±0.9682i −25.6798 0

SE8 ẋ = y 0 −1.0000 0.1412 0

ẏ = −x + yz 0 −0.0500 0 2.1034 0.9

ż = −z − 0.7x2 + y2 − 0.1 −0.1 ±0.9987i −1.3649 0

a general equation with quadratic nonlinearities of
the form

ẋ = y

ẏ = z

ż = f(x, y, z)

f = a1x + a2y + a3z + a4x
2 + a5y

2

+ a6z
2 + a7xy + a8xz + a9yz + a10.

(1)

Any equilibrium point of (x∗, y∗, z∗) of system (1)
must have y∗ = z∗ = 0 and eigenvalues λ that
satisfy

λ3 − fzλ
2 − fyλ − fx (2)

in which fx = a1 + 2a4x
∗, fy = a2 + a7x

∗, and
fz = a3 + a8x

∗. Using the Routh–Hurwitz stability
criterion, we require fz < 0, fyfz + fx > 0, and
fx < 0 for that equilibrium to be stable.
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Table 1. (Continued)

Model Equations Equilibrium Eigenvalues LEs DKY (x0, y0, z0)

SE9 ẋ = y 0 −2.0000 0.0203 0

ẏ = −x + yz 0 −0.0750 0 2.0082 0.8

ż = 2x − 2z + y2 − 0.3 −0.15 ±0.9972i −2.4751 −0.2

SE10 ẋ = y 0 −2.0000 0.0963 3.9

ẏ = −x + yz 0 −0.0250 0 2.0061 0

ż = x − 0.3y − 2z + xz − 0.1 −0.05 ±0.9997i −15.7010 1

SE11 ẋ = y 0 −12.0000 0.0801 −2

ẏ = −x + yz 0 −0.0417 0 2.0056 0

ż = −y − 12z + x2 + 9xz − 1 −1/12 ±0.9991i −14.1917 0.1

SE12 ẋ = y 0 −66.0000 0.0259 2

ẏ = −x + yz 0 −0.0076 0 2.0004 0.6

ż = −66z + y2 + 35xz − 1 −1/66 ±1.0000i −61.6130 0

SE13 ẋ = y 0 −4.9000 0.0540 0

ẏ = −x + yz 0 −0.1020 0 2.0112 −2.2

ż = −4.9z + 0.4y2 + xy − 1 −1/4.9 ±0.9948i −4.8228 0

SE14 ẋ = z 0 −0.6082 0.0657 0.5

ẏ = x + z −0.7 −0.0459 0 2.0401 −1

ż = −y − 3z2 + xy + yz − 0.7 0 ±1.2814i −1.6407 0

SE15 ẋ = −z 0 −1.0618 0.0414 3

ẏ = x − z −10/9 −0.0247 0 2.0062 2

ż = 0.9y + 0.2x2 + xz + yz + 1 0 ±0.9203i −6.6641 0

SE16 ẋ = −z 0 −1.0549 0.0775 1

ẏ = −x + z 0 −0.1726 0 2.0115 6

ż = −7y − 1.4z + x2 + xz − yz 0 ±2.5702i −6.7190 −6

SE17 ẋ = z 0.57/3.1 −1.0000 0.0832 7.5

ẏ = x − y 0.57/3.1 −0.0092 0 2.1262 0

ż = −3.1x − 0.3xz + 0.2yz + 0.57 0 ±1.7607i −0.6549 −5

SE18 ẋ = z 0 −1.0000 0.1469 −28

ẏ = −y + z 0 −0.0500 0 2.0383 0

ż = −2.1x − 0.1z − y2 + 0.11xz + 0.5yz 0 ±1.4483i −3.8348 0

SE19 ẋ = z −0.3 −1.3766 0.0241 0.2

ẏ = −y + z 0 −0.0667 0 2.0005 6

ż = −x − 2xy + 1.7xz − 0.3 0 ±0.8497i −49.8730 7

SE20 ẋ = z 0 −0.8543 0.2125 −2.1

ẏ = −y − z 0 −0.0728 0 2.1753 0

ż = −11x + 2y − 2y2 − z2 − yz 0 ±3.5875i −1.2125 5

SE21 ẋ = z 0 −0.8875 0.0484 0

ẏ = −y − z 0 −0.0563 0 2.0169 −3

ż = −7.1x + y − 2y2 + xz − yz 0 ±2.8279i −2.8617 8.2

SE22 ẋ = z −0.15 −1.0000 0.0557 −6

ẏ = −y − z 0 −0.0750 0 2.0194 3.8

ż = −6x − 2y2 + xz − yz − 0.9 0 ±2.4483i −2.8695 0

SE23 ẋ = −z 0.5 −0.9060 0.0159 −0.4

ẏ = −y − z 0 −0.0470 0 2.0156 1

ż = 4x − 0.2z2 + xy − 2 0 ±2.1006i −1.0159 −9

1350188-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

3.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
12

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 29, 2013 12:56 WSPC/S0218-1274 1350188

M. Molaie et al.

Fig. 1. State space diagram of the cases in Table 1 projected onto the xy-plane.
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We can find x∗ from a1x + a4x
2 + a10 = 0. For

a4 �= 0, we have x∗
1,2 = (−a1 ± √

∆)/2a4 where
∆ = a2

1 − 4a4a10. To have an equilibrium, ∆ should
be greater than or equal to zero, in which case, x∗

1 =
(−a1 +

√
∆)/2a4 and x∗

2 = (−a1 −
√

∆)/2a4. From
the stability condition fx < 0 for x∗

1, we have
√

∆ <
0 which is impossible. Thus a quadratic jerk system
cannot have two stable equilibria, and we therefore
modify the general case in Eq. (1) to

ẋ = y

ẏ = z

ż = a1x + a2y + a3z + a4y
2 + a5z

2

+ a6xy + a7xz + a8yz + a9

(3)

where there is no x2 term in the ż equation to ensure
that one and only one equilibrium exists. This sys-
tem has a single equilibrium at (−a9/a1, 0, 0) whose

stability requires

a1 < 0,
(

a3 − a7a9

a1

)
< 0,

(
a2 − a6a9

a1

)
<

−a1(
a3 − a7a9

a1

) .
(4)

An exhaustive computer search was done consider-
ing many thousands of combinations of the coeffi-
cients a1 through a9 and initial conditions subject
to the constraints in Eq. (4), seeking cases for
which the largest Lyapunov exponent is greater
than 0.001. For each case that was found, the
space of coefficients was searched for values that are
deemed “elegant” [Sprott, 2010], by which we mean
that as many coefficients as possible are set to zero
with the others set to ±1 if possible or otherwise to
a small integer or decimal fraction with the fewest

Fig. 2. The largest Lyapunov exponent and bifurcation diagram of SE3 showing a period-doubling route to chaos
(ż = −ax − y − 4z + y2 + xy).
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possible digits. Cases SE1–SE6 in Table 1 are six
simple cases found in this way. As can be seen, the
eigenvalues for the equilibria at the origin have all
negative real parts, which means that each equilib-
rium is stable.

By similar calculations, many other simple
structures for chaotic flows were investigated, and
17 other cases (SE7–SE23) were added to the pre-
vious six jerk systems in Table 1. In addition to
the cases listed in the table, dozens of additional
cases were found, but they were either equivalent
to one of the cases listed by some linear transfor-
mation of variables, or they were extensions of these
cases with additional terms. In this way, we believe
we have identified most of the elementary forms
of chaotic flows with quadratic nonlinearities that
have a single stable equilibrium.

All these cases are dissipative with attractors
projected onto the xy-plane as shown in Fig. 1. The
Lyapunov spectra and Kaplan–Yorke dimensions
are shown in Table 1 along with initial conditions
that are close to the attractor. As is usual for
strange attractors from three-dimensional autono-
mous systems, the attractor dimension is only
slightly greater than 2.0, the largest of which is
SE20 with DKY = 2.1753, although no effort was

Fig. 3. Cross-section of the basins of attraction of the two
attractors in the xy-plane at z = 0. Initial conditions in the
white region lead to unbounded orbits, those in the red region
lead to the point attractor shown as a black dot, and those
in the light blue region lead to the strange attractor shown
in cross-section as a pair of black lines.

made to tune the parameters for maximum chaos.
All the cases appear to approach chaos through a
succession of period-doubling limit cycles, a typical
example of which (SE3) is shown in Fig. 2. Note
that all the equilibria are spiral nodes (one pair of
complex conjugate eigenvalues) rather than simple
nodes (all eigenvalues real). Another common fea-
ture of these systems is the small negative real part
in the complex pair of eigenvalues compared to the
real eigenvalue.

Since all the cases have a stable equilibrium, a
point attractor coexists with a strange attractor for
each case. Figure 3 shows a cross-section in the xy-
plane at z = 0 of the basin of attraction for the two
attractors for the typical case SE3. Note that the
cross-section of the strange attractor nearly touches
its basin boundary as is typical of low-dimensional
chaotic flows.

3. Conclusion

In conclusion, it is apparent that simple chaotic sys-
tems with a single stable equilibrium that were once
thought to be unusual, may in fact, be rather com-
mon. These systems belong to the newly introduced
class of chaotic systems with hidden attractors. We
showed that chaotic jerk systems with quadratic
nonlinearities cannot have multiple stable equilib-
ria. Furthermore, it can be proved that in any poly-
nomial jerk system, all the equilibria cannot be
simultaneously stable.
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