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1 Introduction

The Burgers mapping expressed by

T 1
ε,µ,ν :

{

x′ = (1− εν)x− εy2

y′ = (1 + εµ+ εx)y
(1)

provides an extraordinarily rich repertoire of mathematical examples illustrating relations
occurring in the theory of turbulent fluid motion, and obtained by a drastic change of the
Navier-Stokes equations. The mapping(1) is smooth and noninvertible. For the parameter
values considered in Burgers (1939), the behavior of the solutions is mainly determined by
the three fixed points,(0, 0) and(−µ,±√

µν), and the singular linex = −µ− 1/ε , such
that every point maps onto thex-axis, which is the stable manifold of the hyperbolic point
(0, 0) so long asεν is less than2. The other fixed points are stable forε less than1/2µ.

Identical behavior is observed in certain other mappings, such as the Lorenz model
given by

Ta,b,c :

{

x′ = (1 + ab)x− bxy
y′ = (1− b)y + cx+ bx2 (2)

Lorenz (1989) analyzed this system withc = 0, which was obtained as an
approximation to an ordinary differential equation via Euler’s forward differencing scheme.
He was interested in the chaotic behavior whenb is extremely large. He illustrated the
pertinence of the concept of computational chaos. The authors considered these same
mappings for detecting fractal sets in Djellit et al. (2010). The fractal structure was revealed
by fractal basin boundaries and by the patterns of self-similarity.

Moreover, Whitehead and MacDonald (1984) considered a mapping derived from a
differential equation model of turbulence given by

T 2
ε,µ,ν :

{

x′ = (1− εν)x− εxy
y′ = (1 + εµ+ εx)y

(3)

Like the other models, this mapping exhibits chaos. Elabbasy et al. (2007) gave the
theoretical analysis of(3) for ε = 1, and complex behavior including chaos was observed
using a numerical method.

The map(2) is not symmetric in the equation, but the attractors are symmetric about
x = 0 for c = 0. The standard analysis of local stability and bifurcationssuggests that
oscillations occur in the presence of only one unstable equilibrium, whereas the coexistence
of three equilibria is characterized by bi-stability, the central equilibrium being on the
boundary which separates the basins of the two stable ones.

All these maps give identical behavior and display homoclinic structure associated with
the basin bifurcation bounded-nonbounded.

The main topic of this paper is to investigate the basic patterns of complex non-
uniqueness of the dynamic behavior of a class of Lorenz mappings proposed in Lorenz
(1989) and given by Eq.(2). It is mainly focused on a new research area to identify and
verify some properties of focal points on such maps.

The existence of invariant sets and weak attractors in the sense of Tsybulin and
Yudovich is rigourously proved in Djellit and Hachemi (2011). We conclude that non-
unique dynamics, associated with extremely complex structures of the basin boundaries,
can have a profound effect on our understanding of the dynamical behavior. The model is
first investigated as a two-parameter quadratic family, andits analysis is explained by using
two types of nonclassical singularity sets. The first one, the critical curve, separates the
plane into two regions having a different number of real inverses (here one and three). The
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second one is a curve of non-definition for two of the three inverses of the map, i.e., these
inverses have a vanishing denominator on this line.

We also present interesting results and typical scenarios between the map and its
inverses. Several papers have shown the importance of the critical curves in the bifurcations
associated with invariant chaotic areas in noninvertible maps, and we consider this paper
as an interaction between analytical methods and numericalmethods.

The rest of the paper is organized as follows. Section 2 describes some peculiar
properties of the Lorenz map. We discuss some cases where bifurcation can cause
qualitative changes in the structure of the domain as some parameters are varied. Also,
critical and prefocal curves are considered and have been used to examine the structure of
the basins. In Section 3, the peculiar case of the embedding parameterb = 1 is considered,
the inverses are determined and analyzed, and the essentialrole played by the vanishing
denominator of these inverses is evidenced. Finally, we consider the modified Lorenz map
and the effects of this perturbation on the symmetry in Section 4.

2 The Lorenz model

Consider the dynamical system generated by a family of two-dimensional continuous
noninvertible mapsTa,b defined by

Ta,b :

{

x′ = (1 + ab)x− bxy
y′ = x2 (4)

where a, b are real parameters, and the functionsf (x, y) = (1 + ab)x− bxy and
g (x, y) = (1− b)y + bx2 are continuous and differentiable. The mapTa,b is noninvertible.
There are regions in the phase plane where we can have different numbers of preimages.
Indeed, a point(x′, y′)∈R

2 may have up to three rank-one preimages that can be computed
by solving the third-degree algebraic system (4) with respect tox andy.

The locus, where the number of preimages changes, is made up by the critical curves.
The critical curves are computed as follows:LC−1 coincides with the set of points in
which the Jacobian determinant vanishes,i.e., detDTa,b = 0, and the critical curveLC =
Ta,b(LC−1) divides the plane in two zonesZ1 andZ3. ThenTa,b is of typeZ1 < Z3 if we
adopt the notation of Mira et al. (1996), where points on one side of the critical curveLC
have one preimage, and points on the other side ofLC have three preimages.

The map (4), which exhibits pitchfork and Neimark-Sacker bifurcations, has an
important feature in that their inverses have denominatorsthat vanish along a line in the
plane forb = 1. This has a great consequence on the chaotic attractor structure. This is
due to the fact that the attractor contains the focal point ofthe inverse. It is evident that
the originO = (0, 0) is a fixed point ofTa,b (not unique), and that the whole linex = 0
is mapped into the origin in one iteration. This kind of noninvertible map of the plane is
structurally well-known. Its “embedding” into a larger structurally stable familyTa,b, for
b < 1 andb > 1, gives regionsZk; (k = 1, 3) being the number of real preimages) which
explains the complex nature when the embedding parameter takes as value1, leading to a
structurally different map.

Recent works dealing with cases of multiple attractors in noninvertible maps have
highlighted how noninvertibility can be a source of bifurcations and complex structures of
the basins of attraction (see references cited in Djellit etal. (2010), Djellit and Hachemi
(2011), and Elabbasy et al. (2007)). However, the global phenomena and the complex
structures of the basins shown here are due to the “dual situation” which occurs when the
inverse map has two prefocal curves and is itself undefined inthe whole plane.
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2.1 Fixed points and prefocal curves

The fixed points ofTa,b for the system(4) are solutions obtained by a trivial manipulation
of (4) with x′ = x andy′ = y. Besides the solution(0, 0), two additional fixed points are
guaranteed to exist ifa > 0, and we can easily verify that ifa < 0, then the origin(0, 0)
is the unique fixed point of the mapTa,b defined by(4). If a > 0, then two further fixed
points,P1 andP2, exist, symmetric with respect to they-axis, withx = ±√

a; y = a.
From the Jacobian matrix, we can see thatJ = detDTa,b(x, y) = (1− b)(1 + ab−

by) + 2b2x2 vanishes on two curves given byy = 1
b
(1 + ab) + 2bx2

(1−b) for b 6= 0 andb 6= 1

or x = 0 for b = 1. The latter curve is focused byTa,b into a single point (following the
terminology used in Mira et al. (1996) and in Ferchichi and Djellit (2009)).

SinceTa,b(x = 0) = (0, 0), we expect that the mapTa,b has at least one inverse with
the denominator, and such thatO(0, 0) is a focal point with respect to they-axis as a
corresponding prefocal curveδO. In fact, the inverses

T−1
1 :

{

x =
√
y′

y = −x′+(1+a)
√
y′

√
y′

(5)

and

T−1
2 :

{

x = −√
y′

y = x′+(1+a)
√
y′

√
y′

(6)

are such that they have a focal point inO(0, 0) with x = 0 as a prefocal curve, where
y′ > 0. The non-definition setδs is given by

δs =
{

(x, y) ∈ R
2 |

√

y′ = 0
}

and δs is a smooth curve in the phase plane. The two-dimensional dynamical system
obtained by successive iteration ofT−1

1,2 is well defined, provided that the initial conditions
belong toE, given by

E = R
2\

∞
∪

k=0
T−k
a,b,0(δs)

The second curve given byLC−1 : y = 1
b
(1 + ab) + 2bx2

(1−b) (obtained by settingJ = 0) is
a curve of merging two preimages.

For a > 0, b > 0 and b 6= 1, the phase plane includes a region of noninvertibility of
the map (4). The noninvertibility region is an unbounded setdefined by27 (1− b)2x2 −
4b(y − (1 + ab)(1− b)/b)3 < 0. This curve has a pointing cusp on they-axis wherex = 0.

The antecedents have coordinates(x, y), such that from (4),x satisfiesb2x3 − bx(y′ −
(1 + ab)(1− b))/b)− (1− b)x′ = 0, andy = ((1 + ab)x− x′)/bx.

Moreover, the mapT 1
a,b is of typeZ1 < Z3 whose critical curveLC : 27((1− b)2x2 −

4b(y − (1 + ab)(1− b)/b)3 = 0, image ofLC−1, separates the plane into two areasZ1

andZ3 where there exists one antecedent and three antecedents, respectively.
To understand the behavior of the map whenb −→ 1, we follow the evolution of the

phase plane when we vary the parametersa andb. We made a survey in the phase plane
and plotted the different singularities, their basins of attraction, and the critical curves for
the system. By analyzing the figures, we show how the particular feature is involved in
explaining some properties of the dynamic behaviors of the map associated with the basin
boundaries and attracting sets.

Consider the casea = 0.1, and vary the parameterb. There are two stable nodes. Both
of the basins are simply connected sets and are located symmetrically with respect to the
origin.
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For b = 1.80, the points above the curve formed byLC with a pointing cusp given
by 27(1− b)2x2 − 4b(y − (1 + ab)(1− b)/b)3 < 0 have three preimages, one in the area
R1, the second inR2, and the third inR3. The mapTa,b is aZ1 < Z3 type according to
Mira et al. (1996) (see Figure 1).

For b = 1.0005, the points above the curve formed byLC, which loses its pointing
cusp and is given for thisb-value byy = 0, have two preimages, one in the areaR1, and
the other inR2. Here, we are concerned with the question of how the number ofpreimages
is reduced asb → 1. The areaR3 disappears, and we obtain instead the linex = 0. This
line corresponds to the prefocal curve, representing a transition curve as seen in Figure 2.
The mapTa,b changes, losing one root on each side of the plane, and becoming a map with
either two real preimages or none.

3 Peculiar case b=1

We consider the caseb = 1 where the mapTa,1 admits two inverses given in Eqs. (5–6).
One of these components is expressed as a quotient whose denominator depends ony. If
we fix b = 1 then the Eq. (4) becomes

Ta,1 :

{

x′ = (1 + a)x− xy
y′ = x2 (7)

Then if y′ > 0, we have two solutions, and no solutions ify′ < 0. So,Ta,1 is aZ0 − Z2

noninvertible map, whereZ0 (the region whose points have no preimages) is the half plane
{(x , y)/y < 0}, andZ2 (the region whose points have two distinct rank-1 preimages) is
the half plane{(x , y)/y > 0} .

The Jacobian vanishes on the linex = 0. The image of this line byTa,1 is reduced to a
point (0, 0). Therefore, according to the definition, this point is a focal point of T−1

a,1 , and
the linex = 0 is associated with the prefocal curve.

A specific class of map, with at least one of the components defined by a fractional
rational function, has been studied in Ferchichi and Djellit (2009) and has very interesting
properties. Some particular dynamical properties have been observed in iterated maps (or
in one of the inverses) where the denominator vanishes, or where a component has the
indeterminate form0/0 at a pointT−1

a,1 . This characteristic has revealed new types of
singularities in the phase plane, such as focal points and prefocal curves. The presence of
these sets may cause new kinds of bifurcations generated by contact between them and
other singularities, which gives rise to new dynamical phenomena and new basin structures
and invariant sets.

In the present case, the inverseT−1
a,1 = T−1

1 ∪ T−1
2 of Ta,1 has a vanishing

denominator. Indeed, we consider a smooth arcγ transverse toδs, and we study the shape
of its image underT−1

1,2 , i.e., T−1
1,2 (γ) with the condition thaty ≥ 0. We assume thatγ is

deprived of the point where it crossesδs.
First we consider arcsγ(t) in the positive half-plane with the following parametric

form:

γ(t) :

{

x(t) = ξ1t+ ξ2t
2 + ξ3t

3

y(t) = η1t+ η2t
2 + η3t

3

where η1, η2,η3 are such thaty(t) = η1t+ η2t
2 + η3t

3 ≥ 0 whent → 0+ andy(t) ≥ 0
whent → 0−. Proceeding in this fashion we can (in principle) generate the desired limit.

However, the use of a truncated power series does not effect calculations when we take
y(t) of degree less than3 with respect tot, since we can have all possible cases oflim

t−>0+

T−1
i (γ(t)) , i = 1, 2 :

lim
t→0+

T−1
1,2 (γ(t)) = lim

t→0+
(
√

η1t+ η2t2 + η3t3,
(1 + a)

√

η1t+ η2t2 + η3t3 − (ξ1t+ ξ2t
2 + ξ3t

3)
√

η1t+ η2t2 + η3t3
)
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= (0, 1 + a) if η1 6= 0,

the slope of the half-tangent ofy(t) in t = 0 ism = η1

ξ1
, then we have a transversal contact

with δs . If ξ1 = 0 the slope is vertical, but the contact remains transversal.

lim
t→0+

T−1
1,2 (γ(t)) = (0,∞) if η1=η2=0 (m =

0

ξ1
, then a tangential contact withδs).

= (0, 1 + a) if η1 = ξ1 = 0 ( m =
0

ξ1
, with a transversal contact withδs).

= (0, 1 + a) if ξ1 = η1 = η2 = 0 (the slopem = 0
ξ2

,

with a tangential contact withδs).

= (0, 1 + a− ξ1√
η2

) if η1 = 0 ( m = 0
ξ1

, and a tangential contact withδs).

= (0, 1 + a+
ξ1√
η2

).

Thus varyingξ1 andη2, the curvature of such arcs tangent toy = 0 at the origin can be
obtained, which satisfies the definition of prefocal sets of the inverse (see Whitehead and
MacDonald (1984), Mira et al. (1996)).

This property clarifies the geometric structure of the attracting set occurring for
particular choices of the parameters.

Arcs crossing tangentially through the origin have two distinct rank-one preimages
crossing throughδO, and all transverse directions tend to the single point(0, 1 + a).

Besides the elements seen up to now, there is also another particularity in the dynamics
of Ta,1. The second iterate of the liney = 1 + a is the fixed pointO, T 2

a,1(y = 1 + a) =
(0, 0), and the significance of this computation lies in the requirement that this line be the
prefocal curve ofT−2

a,1 associated with the origin (see Figure 3).
Note that the existence of two curves, the linesx = 0 and y = 1 + a, mapped into

the origin make the iteration properties ofTa,1 very different from that of maps with a
unique inverse. Any arc crossing these lines twice is mappedinto an arc with a loop at
the origin as seen in Ferchichi and Djellit (2009). Since theorigin is a saddle fixed point,
this requires that these curves belong to the stable set of the point. Their role is important
in understanding the homoclinic bifurcation of the point(0, 0), giving rise to a unique
chaotic attractor which intersects the liney = 1 + a in infinitely many arcs with self-similar
structure and loops issuing from the origin.

4 Broken symmetry in the modified Lorenz model

Now consider the mapTa,b,c given in Eq.(2).
Givenx′ andy′, if we try to solve the algebraic system with respect to the unknowns

x andy, we get three solutions from(2) in whichx satisfiesb2x3 + cbx2 − bx(y′ − (1 +
ab)(1− b))/b)− (1− b)x′ = 0 andy = ((1 + ab)x− x′)/bx.

The Jacobian determinant is given bydetDTa,b,c(x, y) = (1 − b)[(1 + ab)− by] +

2bx2 + cbx. It vanishes on the curveLC−1 : y = 1
b

(1 + ab) + cx+2bx2

(1−b) . The

noninvertibility region is an unbounded set defined by27[(1− b)2x2 + 2c3/27b+ c(y −
(1 + ab)(1− b)/b)]− 4[b(y − (1 + ab)(1− b)/b+ c/3)]3 < 0. This curve also possesses
a pointing cusp.

Whenc = 0, the boundary that separates the basin of the two fixed points, symmetric
with respect to the saddle fixed pointO = (0, 0), is still formed by the whole stable
manifoldW s(O).
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Whenb = 1, for c = 0, (0, 0) is a focal point for the two inverse determinations.
T−1
1 (x, y) = ((−c+

√

(c2 + 4y))/2, ((1 + a)(c−
√

c2 + 4y + 2x)/(c−
√

c2 + 4y))

T−1
2 (x, y) = ((−c−

√

c2 + 4y)/2, ((1 + a)(c+
√

c2 + 4y + 2x)/(c+
√

c2 + 4y))

- For c > 0, (0, 0) is a focal point for the inverse determinationT−1
1 .

- For c < 0, (0, 0) is a focal point for the inverse determinationT−1
2 .

Figure 4a, obtained witha = 3.00, b = 0.1, andc = 0.18, shows the basins of the two
fixed pointsP1 = (−c+

√
c2+4b2a
2b , a) andP2 = (−c−

√
c2+4b2a
2b , a), which are stable foci.

For c = 0.25, P2 becomes unstable with the appearance of a closed curve via a Neimark-
Sacker bifurcation in Figure 4b, where the basins of the two fixed pointsP1 andP2 are
represented by blue and orange respectively, and they are simply connected sets. The
basins do not maintain the same qualitative structure, and the symmetry has broken. This
asymmetry has a real effect on the local stability properties of the equilibria, and it results
in an evident asymmetry in the basins of attraction. As shownin Figure 4b, whenc 6= 0, the
extension of the basin of the fixed pointB(P2) located on the left side of the origin is less
than the extension ofB(P1). The originO is still a saddle point without any homoclinic
orbit.

We observe that small changes in the parameterb have some effects on the properties
of the attractors, and they may cause remarkable asymmetries in the structure of the basins,
which can only be detected from the global properties of the studied model. In Figures 4b,
4c, and Figure 5, we show that the attracting sets are quite close to their boundary, and
asb is increased, the homoclinic bifurcation of the saddle point O occurs when the two
attractors contact their boundaries. In Figure 5, the attracting set is uniquely tangent toLC.
In Figure 5, we show in blue region the unstable manifold of the saddle pointO and the
points that visit the attractor and the critical curve.

For the special caseb = 1 (see Figure 6), we find a similar situation using the two
branches of the unstable manifold of the saddle pointO which converge to this homoclinic
closed curve. The focus point is internal to this closed structure which remains bounded
and tangential to both branches of the invariant manifold at(0, 0). In Figure 7, the very
complicated unstable manifold has degenerated from a simple closed curve to a chaotic
complex curve with loops associated with the focal point(0, 0). This chaotic behavior is
created by the unstable manifold.

When the parameterc is increased, the structure of the homoclinic closed curve expands
gradually with loops created from the focusO around the focusP2.

5 Conclusion

Lorenz mappings have an extraordinarily rich repertoire ofbehaviors, giving rise to
examples of many kinds of regular and irregular features. They are smooth and
noninvertible with nonconstant Jacobian. For the time-increment parameter valueb = 1
andc = 0, the behavior of the solutions is mainly determined by the inverse maps having a
vanishing denominator and undefined in the whole plane but only in the positive half plane
with respect toy. The structure of the chaotic attractor is strongly influenced by the fact
that the focus (which can also be a saddle point) is containedin the attractor. Whenc 6= 0,
complex and degenerate behaviors can be seen in the phase plane.
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Figure 4: The blue region and orange points denote the basins ofP1 andP2 for the map
Ta,b,c
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Figure 5: The blue and orange points denote the basins ofP1 andP2 for the mapTa,b,c

0

1 − 1
1 − 2
1 − 3
1 − 4
1 − 5
1 − 6
1 − 7
1 − 8
1 − 9

2 − 1
2 − 2
2 − 3
2 − 4
2 − 5
2 − 6
2 − 7
2 − 8
2 − 9

3 − 1
3 − 2
3 − 3
3 − 4
3 − 5
3 − 6
3 − 7
3 − 8
3 − 9

Bass_Atr

Atr

x

y

 a =  0.5 ,  b = 1 ,  c = 0.7

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
LC

−1

LC

δQ

δS

Figure 6: The homoclinic bifurcation and closed invariant curve around the focusP2
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Figure 7: The homoclinic closed curve and loops issuing from the origin


