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Abstract: The Lorenz model is of interest because of its abundantdafions
and dynamical phenomena, due largely to the presence afatriets or non-
definition sets. The model is investigated as a three-paeargeadratic family.
This article further develops and refines a study of its saeinattraction, and
it is explained by using two types of nonclassical singtyasets. This has an
important impact on the number of preimages and shows tleagaskrole played
by the vanishing denominator in the inverses. A deeper aizabf the global
dynamic properties of the model in the parameter rangesenthege steady states
exist, reveals the role of symmetry with an interesting aothglex dynamic
structure.
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1 Introduction

The Burgers mapping expressed by

1 2 =1 —ev)x —ey? 0
sty =(14ceu+ex)y

provides an extraordinarily rich repertoire of mathenedtexamples illustrating relations
occurring in the theory of turbulent fluid motion, and obtdrby a drastic change of the
Navier-Stokes equations. The mappirg is smooth and noninvertible. For the parameter
values considered in Burgers (1939), the behavior of thetisols is mainly determined by
the three fixed pointg0, 0) and(—px, +./nv), and the singular line = —y — 1/, such
that every point maps onto theaxis, which is the stable manifold of the hyperbolic point
(0,0) so long agv is less thar2. The other fixed points are stable foless thanl /2.

Identical behavior is observed in certain other mappingshss the Lorenz model
given by

a2’ = (14 ab)x — bxy
T(LJ),C {y/ _ (1 _ b)y +cx+ bfL‘z (2)

Lorenz (1989) analyzed this system with= 0, which was obtained as an
approximation to an ordinary differential equation via &itd forward differencing scheme.
He was interested in the chaotic behavior wibeis extremely large. He illustrated the
pertinence of the concept of computational chaos. The asitbonsidered these same
mappings for detecting fractal sets in Djellit et al. (20I)e fractal structure was revealed
by fractal basin boundaries and by the patterns of selftaiity.

Moreover, Whitehead and MacDonald (1984) considered a mgpgerived from a
differential equation model of turbulence given by

s J=(01—-ev)z—cay 3)
syt y = (14eu+ex)y

Like the other models, this mapping exhibits chaos. Elapl&sal. (2007) gave the
theoretical analysis df3) for ¢ = 1, and complex behavior including chaos was observed
using a numerical method.

The map(2) is not symmetric in the equation, but the attractors are sgtrimabout
x =0 for ¢ = 0. The standard analysis of local stability and bifurcatisaggests that
oscillations occur in the presence of only one unstabldigguim, whereas the coexistence
of three equilibria is characterized by bi-stability, thentral equilibrium being on the
boundary which separates the basins of the two stable ones.

All these maps give identical behavior and display homacktructure associated with
the basin bifurcation bounded-nonbounded.

The main topic of this paper is to investigate the basic pastef complex non-
uniqueness of the dynamic behavior of a class of Lorenz maggspproposed in Lorenz
(1989) and given by Eq2). It is mainly focused on a new research area to identify and
verify some properties of focal points on such maps.

The existence of invariant sets and weak attractors in timsesef Tsybulin and
Yudovich is rigourously proved in Djellit and Hachemi (201We conclude that non-
unique dynamics, associated with extremely complex sirastof the basin boundaries,
can have a profound effect on our understanding of the dycelrbehavior. The model is
first investigated as a two-parameter quadratic family,isnahalysis is explained by using
two types of nonclassical singularity sets. The first one,dhtical curve, separates the
plane into two regions having a different number of real ises (here one and three). The
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second one is a curve of non-definition for two of the threeiisgs of the map, i.e., these
inverses have a vanishing denominator on this line.

We also present interesting results and typical scenagbwden the map and its
inverses. Several papers have shown the importance ofiticalaturves in the bifurcations
associated with invariant chaotic areas in noninvertibégg) and we consider this paper
as an interaction between analytical methods and numenietidods.

The rest of the paper is organized as follows. Section 2 descrsome peculiar
properties of the Lorenz map. We discuss some cases whearecdiibn can cause
qualitative changes in the structure of the domain as somaners are varied. Also,
critical and prefocal curves are considered and have beshtasexamine the structure of
the basins. In Section 3, the peculiar case of the embeddirzgeteb = 1 is considered,
the inverses are determined and analyzed, and the essefigllayed by the vanishing
denominator of these inverses is evidenced. Finally, wasiden the modified Lorenz map
and the effects of this perturbation on the symmetry in $acti

2 The Lorenz model

Consider the dynamical system generated by a family of timtedsional continuous
noninvertible map4’, , defined by

' = (1+ab)x — bz
T(L,b : {y/ :;2 ) 4 (4)

where a,b are real parameters, and the functiofigz,y) = (1 + ab)z — by and

g (z,y) = (1 — b)y + bx? are continuous and differentiable. The niap, is noninvertible.
There are regions in the phase plane where we can have diffeuenbers of preimages.
Indeed, a pointz’, ') € R? may have up to three rank-one preimages that can be computed
by solving the third-degree algebraic system (4) with resper andy.

The locus, where the number of preimages changes, is madgthe loritical curves.
The critical curves are computed as followsZ'_; coincides with the set of points in
which the Jacobian determinant vanishies, det DT, ;, = 0, and the critical curve.C' =
To»(LC_7) divides the plane in two zonés andZs. ThenT, ; is of typeZ, < Zs if we
adopt the notation of Mira et al. (1996), where points on ade sf the critical curve.C
have one preimage, and points on the other sidetvhave three preimages.

The map(4), which exhibits pitchfork and Neimark-Sacker bifurcatipiegs an
important feature in that their inverses have denominatwsvanish along a line in the
plane forb = 1. This has a great consequence on the chaotic attractotwseud his is
due to the fact that the attractor contains the focal poirthefinverse. It is evident that
the originO = (0, 0) is a fixed point of7, ; (not unique), and that the whole line= 0
is mapped into the origin in one iteration. This kind of nomrtible map of the plane is
structurally well-known. Its “embedding” into a largerwstiurally stable familyZy, 5, for
b < 1 andb > 1, gives region¥y; (k = 1, 3) being the number of real preimages) which
explains the complex nature when the embedding paramétes & valué, leading to a
structurally different map.

Recent works dealing with cases of multiple attractors inimeertible maps have
highlighted how noninvertibility can be a source of bifuioas and complex structures of
the basins of attraction (see references cited in Djelldalef2010), Djellit and Hachemi
(2011), and Elabbasy et al. (2007)). However, the globahphena and the complex
structures of the basins shown here are due to the “duatisittiavhich occurs when the
inverse map has two prefocal curves and is itself undefindteinvhole plane.
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2.1 Fixed points and prefocal curves

The fixed points off, ;, for the systeni4) are solutions obtained by a trivial manipulation
of (4) with 2/ = x andy’ = y. Besides the solutiof0, 0), two additional fixed points are
guaranteed to exist if > 0, and we can easily verify that if < 0, then the origin(0, 0)
is the unique fixed point of the mdf, ; defined by(4). If a > 0, then two further fixed
points,P; and P, exist, symmetric with respect to teaxis, withz = +/a;y = a.

From the Jacobian matrix, we can see that det DT, ;(z,y) = (1 — b)(1 + ab —

by) + 2b%2? vanishes on two curves given by= 3 (1 + ab) + (21@2) forb # 0andb # 1
orz =0 for b = 1. The latter curve is focused I, ; into a single point (following the
terminology used in Mira et al. (1996) and in Ferchichi anéllitj(2009)).

SinceT, »(x = 0) = (0,0), we expect that the maf, ;, has at least one inverse with
the denominator, and such th@{0,0) is a focal point with respect to thg-axis as a

corresponding prefocal curgg . In fact, the inverses

o Jr=vY
Ty e { _ =z’ +(1+a)Vy’ (5)
Y v
and
L fr=-v
Ty {y _ 2+ (4T (6)
Y7

are such that they have a focal pointGr0,0) with 2 = 0 as a prefocal curve, where
y’ > 0. The non-definition sef; is given by

b, = {(a.y) € R? | Vi =0}

and §, is a smooth curve in the phase plane. The two-dimensionahrdical system
obtained by successive iteration:ﬂﬂ}1 is well defined, provided that the initial conditions
belong toF, given by

E =R\ U T,

The second curve given byC'_y 1y = ¢ (1 + ab) + (21@2) (obtained by setting = 0) is
a curve of merging two preimages.

Fora > 0,b> 0 andb # 1, the phase plane includes a region of noninvertibility of
the map (4). The noninvertibility region is an unboundeddsftned by27 (1 — b)%2? —
4b(y — (1 +ab)(1 — b)/b)3 < 0. This curve has a pointing cusp on thexis wherer = 0.

The antecedents have coordinatesy), such that from (4)y satisfiesh?z3 — ba(y’ —
(I+ab)(1—-0))/b) — (1 =b)z’ =0,andy = ((1 + ab)x — ") /bx.

Moreover, the maff, , is of typeZ, < Z3 whose critical curvé&C' : 27((1 — b)*z* —
4b(y — (1 +ab)(1 — b)/b)® = 0, image of LC_;, separates the plane into two argas
andZ3; where there exists one antecedent and three antecedspestieely.

To understand the behavior of the map wiber— 1, we follow the evolution of the
phase plane when we vary the parameteesidb. We made a survey in the phase plane
and plotted the different singularities, their basins ¢faation, and the critical curves for
the system. By analyzing the figures, we show how the paaidelature is involved in
explaining some properties of the dynamic behaviors of thp associated with the basin
boundaries and attracting sets.

Consider the case = 0.1, and vary the parametér There are two stable nodes. Both
of the basins are simply connected sets and are located gdyitetig with respect to the
origin.
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For b = 1.80, the points above the curve formed By’ with a pointing cusp given
by 27(1 — b)%2% — 4b(y — (1 + ab)(1 — b)/b)? < 0 have three preimages, one in the area
R, the second imR,, and the third inRs. The mapT, ; is aZ; < Z3 type according to
Mira et al. (1996) (see Figure 1).

For b = 1.0005, the points above the curve formed By, which loses its pointing
cusp and is given for thig-value byy = 0, have two preimages, one in the aeg, and
the other inR,. Here, we are concerned with the question of how the numberedihages
is reduced a$ — 1. The areaRs disappears, and we obtain instead the line 0. This
line corresponds to the prefocal curve, representing aitfan curve as seen in Figure 2.
The magl, ;, changeslosing one root on each side of the plane, and becoming a ntap wi
either two real preimages or none.

3 Peculiar case b=1

We consider the cade= 1 where the mag;, ; admits two inverses given in Egs. (5-6).
One of these components is expressed as a quotient whosmidabtar depends og. If
we fix b = 1 then the Eq. (4) becomes

=014+a)x—2x
T{y:(z Jr—ay 7)

Then if y/ > 0, we have two solutions, and no solutions/if< 0. So,7, 1 is aZy — Z»
noninvertible map, wherg, (the region whose points have no preimages) is the half plane
{(z, y)/y < 0}, andZ, (the region whose points have two distinct rank-1 preimpges
the half plan€g{(z, y)/y > 0} .

The Jacobian vanishes on the line= 0. The image of this line by}, ; is reduced to a
point (0, 0). Therefore, according to the definition, this point is a fquaint of Tafll, and
the linex = 0 is associated with the prefocal curve.

A specific class of map, with at least one of the componentse@fby a fractional
rational function, has been studied in Ferchichi and Djé¥009) and has very interesting
properties. Some particular dynamical properties have béserved in iterated maps (or
in one of the inverses) where the denominator vanishes, erevdh component has the
indeterminate fornD/0 at a pointTafll. This characteristic has revealed new types of
singularities in the phase plane, such as focal points asidal curves. The presence of
these sets may cause new kinds of bifurcations generatedrigat between them and
other singularities, which gives rise to new dynamical giteana and new basin structures
and invariant sets.

In the present case, the inver§g | =7y 'UT, ' of 7, has a vanishing
denominator. Indeed, we consider a smoothan@nsverse td,, and we study the shape
of its image undefT;%, ie, T1f21 () with the condition thay > 0. We assume that is
deprived of the point where it crossés

First we consider arcs(t) in the positive half-plane with the following parametric

form: )
(t) a(t) = &t + Eat® + E3t®
“Lyt) =it + nat? + st

where 1,19 13 are such thaty(t) = nit + not% + n3t3 > 0 whent — 07 andy(t) > 0

whent — 0~. Proceeding in this fashion we can (in principle) generagedisired limit.
However, the use of a truncated power series does not efilxtlations when we take

y(t) of degree less thahwith respect ta, since we can have all possible cases lbfa

t—>0t
T (y(),i=1,2:

K3

(14 a)y/mut + ot + st — (&t + &t + &5t°)

lim 775 (y(t)) = li t + mot? 3,
et 12 (v(1)) H”&(\/ﬂl + 2t + 13

Vit 4 nat? + nats

)
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= (051+a)|fn1 7&0;

the slope of the half-tangentaf(¢) int = 0ism = % then we have a transversal contact
with §, . If & = 0 the slope is vertical, but the contact remains transversal.

1ir(r)1+Tf21 (v(t)) = (0,00) if n1=n2=0(m = 52 then a tangential contact withy).
t— ’ 1

. 0o .
= (0,14 a)ifn =& = 0(m = —, with a transversal contact with).

&
= (0,1+a)if & =m =72 = 0(the slopen =,

with a tangential contact with, ).

&1

=(0,1+a— ﬁ) if g =0(m= 5%, and a tangential contact with).
&1
=(0,1+a+—).
( \/%)

Thus varyings; andns, the curvature of such arcs tangengte- 0 at the origin can be
obtained, which satisfies the definition of prefocal sethefibverse (see Whitehead and
MacDonald (1984), Mira et al. (1996)).

This property clarifies the geometric structure of the ating set occurring for
particular choices of the parameters.

Arcs crossing tangentially through the origin have two ididt rank-one preimages
crossing throughip, and all transverse directions tend to the single p@int + a).

Besides the elements seen up to now, there is also anothieufaity in the dynamics
of T, 1. The second iterate of the line= 1 + a is the fixed poinO, T2 ,(y =1 +a) =
(0,0), and the significance of this computation lies in the request that this line be the
prefocal curve o'rTaff associated with the origin (see Figure 3).

Note that the existence of two curves, the lines 0 andy = 1 + a, mapped into
the origin make the iteration properties ‘6f ; very different from that of maps with a
unique inverse. Any arc crossing these lines twice is mappdan arc with a loop at
the origin as seen in Ferchichi and Djellit (2009). Sincedhgin is a saddle fixed point,
this requires that these curves belong to the stable seeqfdmt. Their role is important
in understanding the homoclinic bifurcation of the po{At0), giving rise to a unique
chaotic attractor which intersects the lipe= 1 4 « in infinitely many arcs with self-similar
structure and loops issuing from the origin.

4 Broken symmetry in the modified Lorenz model

Now consider the map, ;. . given in Eq(2).

Givenz’ andy/, if we try to solve the algebraic system with respect to thienamvns
x andy, we get three solutions froif2) in which z satisfiesh?z3 + cbz? — bx(y — (1 +
ab)(1=10))/b) — (1 —b)2’ =0andy = ((1 + ab)x — 2’)/bx.

The Jacobian determinant is given Byt DTy, .(z,y) = (1 — b)[(1 + ab) — by| +
2ba? + cbz. It vanishes on the curvelC_; : y=1 (1+ab) + Cfffg)ﬁ. The

noninvertibility region is an unbounded set defined23(1 — b)22% + 2¢®/27b + c(y —
(14 ab)(1 —b)/b)] — 4[b(y — (1 + ab)(1 — b)/b+ ¢/3)]* < 0. This curve also possesses
a pointing cusp.

Whenc¢ = 0, the boundary that separates the basin of the two fixed paiysmetric
with respect to the saddle fixed poitt = (0,0), is still formed by the whole stable
manifoldW?*(0).
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Whenb = 1, for ¢ = 0, (0, 0) is a focal point for the two inverse determinations.
Iy ' (z,y) = (—e+ V(2 +49))/2. (1 +a)(c — /2 + 4y +22) /(c —
V2 +4y))

Ty Ha,y) = (e =V +49) /2, (L + a)(e + /2 + 4y + 22) /(e + /¢ + 4y))

- Forc > 0, (0,0) is a focal point for the inverse determinatidi *.

-Forc < 0, (0,0) is a focal point for the inverse determinatidi *.

Figure 4a, obtained with = 3.00, b = 0.1, andc = 0.18, shows the basins of the two
fixed pointsP; = (=<H¥g e ) and P, = (==Y +1b%a ), which are stable foci.
Forc = 0.25, P, becomes unstable with the appearance of a closed curve vé@naakk-
Sacker bifurcation in Figure 4b, where the basins of the twedfipointsP; and P, are
represented by blue and orange respectively, and they m@ysiconnected sets. The
basins do not maintain the same qualitative structure, ls@dymmetry has broken. This
asymmetry has a real effect on the local stability propewiethe equilibria, and it results
in an evident asymmetry in the basins of attraction. As shioviaiigure 4b, whemr # 0, the
extension of the basin of the fixed poiB{ P ) located on the left side of the origin is less
than the extension aB(P;). The originO is still a saddle point without any homoclinic
orbit.

We observe that small changes in the paramieteave some effects on the properties
of the attractors, and they may cause remarkable asymmgtrilee structure of the basins,
which can only be detected from the global properties of thdied model. In Figures 4b,
4c, and Figure 5, we show that the attracting sets are quisedb their boundary, and
asb is increased, the homoclinic bifurcation of the saddle paimccurs when the two
attractors contact their boundaries. In Figure 5, the@itrg set is uniquely tangent #C'.

In Figure 5, we show in blue region the unstable manifold ef$hddle poin© and the
points that visit the attractor and the critical curve.

For the special case= 1 (see Figure 6), we find a similar situation using the two
branches of the unstable manifold of the saddle pOimthich converge to this homoclinic
closed curve. The focus point is internal to this closedcstme which remains bounded
and tangential to both branches of the invariant manifol(al). In Figure 7, the very
complicated unstable manifold has degenerated from a siklpked curve to a chaotic
complex curve with loops associated with the focal pdin®). This chaotic behavior is
created by the unstable manifold.

When the parameteiis increased, the structure of the homoclinic closed cuxpareds
gradually with loops created from the focsaround the focu$>.

5 Conclusion

Lorenz mappings have an extraordinarily rich repertoirebehaviors, giving rise to
examples of many kinds of regular and irregular featureseyThre smooth and
noninvertible with nonconstant Jacobian. For the timeentent parameter value= 1
andc = 0, the behavior of the solutions is mainly determined by tivelise maps having a
vanishing denominator and undefined in the whole plane dytinithe positive half plane
with respect tay. The structure of the chaotic attractor is strongly influehbg the fact
that the focus (which can also be a saddle point) is contdam#uk attractor. When £ 0,
complex and degenerate behaviors can be seen in the phase pla
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Figure 1: Critical curves of the map which is of typé, < Zs
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a=01,b=101,c=0
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Figure 2: When the number of preimages changes, the map becomesdfiyp Z-

a=01,b=1,¢c=0

T g

Figure 3: Preimages of arcs issuing from the origin and belongingegbsitive half-plane

with respect tgy.
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Figure 4: The blue region and orange points denote the basiidg @nd P, for the map
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Figure 5: The blue and orange points denote the basing aind P, for the mapl, 4 .
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Figure 7: The homoclinic closed curve and loops issuing from theiorig



