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Abstract Nonlinear dynamical systems often have

multiple stable states and thus can harbor coexist-

ing and hidden attractors that may pose an incon-

venience or even hazard in practical applications.

A mplitude control provides one method to detect these

coexisting attractors, and it explains the unpredictable

and irreproducible behavior that sometimes occurs

in carefully engineered systems. In this paper, two

regimes of amplitude control are described to illus-

trate the method for detecting multistability and possi-

ble coexisting or hidden attractors.
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1 I ntroduction

F or their potential application or hazards, chaotic sys-

tems and their synchronization have evoked great inter-

est [1–6]. E specially, multistability with coexisting

attractors in nonlinear dynamics and laser engineer-

ing [7–15] has attracted renewed attention because the

presence of coexisting attractors may have serious tech-

nological implications and pose risks in applications

and in amplitude control. Moreover, many dynamical

systems have multiple coexisting attractors even with-

out eq uilibria, where the attractors are hidden rather

than self-excited [16,17] and whose basins of attrac-

tion do not contain neighborhoods of any eq uilibria.

The amplitude of oscillation in a dynamical sys-

tem can often be controlled by changing the coef-

ficient of one or more terms in the eq uations that

describe the behavior without otherwise altering the

characteristics of the oscillation such as its power spec-

tral density and Lyapunov exponents [18–21]. In total

amplitude control, all of the variables are simultane-

ously and proportionally controlled, whereas in partial

amplitude control, only some are changed while the

others are unaffected [22]. This method is often used

in electrical circuit implementations to avoid saturating

the amplifiers.

A mplitude control can be hindered by the existence

of multistability, but it also provides a possible method

to detect coexisting attractors, including hidden attrac-

tors. E ven though Leonov et al. [16,17] used a special

analytical–numerical algorithm to detect and localize
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the hidden attractors of Chua’s circuit, it is still impor-

tant to develop other effective methods to detect coex-

isting and hidden attractors. In this paper, we apply

amplitude control and use a calculation of the Lyapunov

exponents to give an indication of existence of multi-

ple attractors. The method is also suitable for systems

with no or stable eq uilibrium points, where all attractors

are hidden. In Sect. 2, the basic method is described.

Section 3 gives several examples of the method using

both total and partial amplitude control. In Sect. 4, the

advantages and limitations of the method are discussed

along with future prospects.

2 P rinciple of amplitude control for detecting

coexisting attractors

A mplitude control makes the attractor larger or smaller

by changing the scale of some or all of the variables,

and so it does not change the dynamical and topologi-

cal properties of the attractor. H owever, if a system has

multiple coexisting attractors, it is usually necessary to

scale the initial conditions to remain within the desired

basin of attraction. Otherwise, very different dynam-

ical behaviors may occur for different settings of the

amplitude control, which is an advantage if the goal is

to identify coexisting attractors.

In general, these attractors may have very differ-

ent dynamics including stable eq uilibria, periodicity,

q uasi-periodicity, chaos, and hyperchaos. A powerful

method for identifying and q uantifying the dynamic is

the spectrum of Lyapunov exponents, whose number is

eq ual to the number of dynamical variables and that are

usually ordered from the largest (most positive) to the

smallest (most negative). Consider a two-dimensional

space of the largest two Lyapunov exponents λ1 and

λ2 as shown in F ig. 1. F rom the definition, the expo-

nents lie on or below the 45-degree line with stable

eq uilibria (SE ) in the lower left q uadrant, limit cycles

(LC) along the negative λ2-axis, toruses (T) at the ori-

gin, chaotic attractors along the positive λ1-axis, and

hyperchaotic attractors in the upper right q uadrant. If

a dynamical system has coexisting attractors, they will

usually have different values of one or both of their two

largest Lyapunov exponents. Therefore, a scatter plot in

the plane for different initial conditions will show clus-

ters of points corresponding to the different coexisting

attractors and will identify their types.

Similarly, for a given initial condition, different set-

tings of the amplitude control will generally cause the

Fig. 1 Dynamical behaviors indicated by the two largest Lya-

punov exponents

system to visit the basins of most if not all of the attrac-

tors, especially if the basin boundaries are fractal [7–9]

which is common in nonlinear dynamical systems that

are multistable. H owever, for some dynamical systems,

the attracting basin is simple or symmetrical according

to some axis or original point, and so an appropriate ini-

tial condition must be chosen to increase the likelihood

of visiting all the basins as the amplitude is adjusted.

The amplitude control can be thought of as taking a

particular straight-line path through the space of initial

conditions.

3 Finding coexisting attractors by amplitude

control

3.1 Simple amplitude control

W hen we speak of an amplitude control we mean that

the variables are controlled in proportion to another,

and we do not consider cases in which variables

are independently controlled. A mplitude control can

be either partial (P A C) or total (TA C) depending on

whether some or all of the dynamic variables are

controlled. In an n-dimensional chaotic system, P A C

means that anywhere from one to n – 1 of the state

space variables are controlled, whereas TA C means all

n of the variables are controlled.

Several chaotic systems based on absolute-value

nonlinearities and with invariant Lyapunov exponents

[18–20] have been studied, in which a constant (time-
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independent) term in the eq uation determines the

amplitude. In fact, such a constant is necessary in any

system that contains only absolute-value nonlinearities

since there would otherwise be nothing to determine

the amplitude scale, and thus no attractor could exist.

Therefore, the constant term is an amplitude parameter,

which could realize TA C, and the amplitude parameter

can be implemented electronically with an adjustable

DC power supply.

Most model chaotic systems assume polynomial

nonlinearities. Suppose there are four groups of state

variable vectors, X, Y, U and W. X=(x1, x2, . . ., xl1)
T,

Y = (y1, y2, . . ., yl2)
T, U = (u1, u2, . . ., ul1)

T, W =
(w1, w2, . . ., wl2)

T. There is no coupling or mix-

ing of the linear terms between X and Y. D is

a constant vector, D = (d1, d2, . . ., dl2), p and q

are the index vectors associated with the state vari-

able vector of the corresponding dimension, p =
(p1, p2, . . ., pl1), q = (q1, q2, . . ., ql2), pi = 0(i =
1, 2, . . ., l1), q j = 0( j = 1, 2, . . ., l2), pi and q j

are integers. ||p||1, ||q||1 mean a vector of unit norm.

r = 2, n = 2, n 5 r, r is the highest index

of the nonlinear term, n is another positive integer

representing the index of the nonlinear term of X.

Then the polynomial nonlinearity can be written as

gp,q(X, Y) = ck
[p,q]x

p1

1 x
p2

2 · · · x
pl1

l1
y

q1

1 y
q2

2 · · · y
ql2

l2
, k =

1, 2, . . ., l1, l1 + 1, l1 + 2, . . ., l1 + l2, where ck
[p,q] is

the coefficient of each term in the dimension k.

T heorem 1 S uppo s e a diffe re ntial e quatio n o f a ch ao -

tic s ys te m w ith o ut a co ns tant te rm can b e e xpre s s e d as

Ẋ =
∑

||p||1=1

gp(X) +
∑

||p||1=r

gp(X). (1)

T h e n th e s ys te m (2) can re alize T A C b y a unifi e d para-

m e te r intro ductio n in all o f th e no nline ar co e ffi cie nts ,

and all v ariab le s in th e v e cto r X can b e co ntro lle d to

b e f
−1

r−1 o f th e o riginal s cale .

U̇ =
∑

||p||1=1

gp(U) + f
∑

||p||1=r

gp(U), (2)

w h e re U = f
−1

r−1 X, f 6= 0, and th e ne w intro duce d

co e ffi cie nt param e te r f is an am plitude param e te r fo r

T A C .

P ro o f 1 Substitute U = f
−1

r−1 X into E q . (2) as follows,

f
−1

r−1 Ẋ=
∑

||p||1=1

f
−1

r−1 gp(X)+ f
∑

||p||1=r

( f
−1

r−1 )r gp(X)

(3)

A fter simplification, E q . (3) turns into E q . (1). This con-

trol mode is called TA C mode because all the variables

in the chaotic system of with polynomial nonlinearity

can be controlled by introducing a unified coefficient

in each nonlinear term. ut

T heorem 2 S uppo s e a diffe re ntial e quatio n o f a ch ao tic

s ys te m can b e e xpre s s e d as






































Ẋ =
∑

||p||1=1,||q||1=0

gp,q(X, Y)

+
∑

||p||1=1,||p||1+||q||1=r

gp,q(X, Y),

Ẏ =
∑

||p||1=0,||q||1=1

gp,q(X, Y)

+
∑

||p||1=n,||p||1+||q||1=r

gp,q(X, Y) + D.

(4)

T h e n th e s ys te m (5) can re alize P A C b y a unifi e d para-

m e te r intro ductio n in s o m e o f th e no nline ar co e ffi cie nts ,

and th e am plitude o f th e v ariab le v e cto r X can b e

co ntro lle d to b e 1/ n
√

f o f th e o riginal s cale , w h ile th e

am plitude o f th e v ariab le v e cto r Y re m ains co ns tant.






































U̇ =
∑

||p||1=1,||q||1=0

gp,q(U, W)

+
∑

||p||1=1,||p||1+||q||1=r

gp,q(U, W),

Ẇ =
∑

||p||1=0,||q||1=1

gp,q(U, W)

+ f
∑

||p||1=n,||p||1+||q||1=r

gp,q(U, W) + D,

(5)

w h e re U = X/ n
√

f , W = Y, and th e ne w intro duce d

co e ffi cie nt param e te r f ( f > 0) is an am plitude para-

m e te r fo r P A C .

P ro o f 2 Substitute U = X/ n
√

f , W = Y into E q . (5)

as follows,







































1
n
√

f
Ẋ =

∑

||p||1=1,||q||1=0

1
n
√

f
gp,q(X, Y)

+
∑

||p||1=1,||p||1+||q||1=r

1
n
√

f
gp,q(X, Y),

Ẏ =
∑

||p||1=0,||q||1=1

gp,q(X, Y)

+ f
∑

||p||1=n,||p||1+||q||1=r

( 1
n
√

f
)ngp,q(X, Y) + D

(6)

A fter simplification, E q . (6) becomes E q . (4). This con-

trol mode is called P A C mode because the amplitude

of the variables in the vector X is controlled by the

introduced coefficients while the other variables in the

vector Y remain unchanged. ut
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Fig. 2 Lyapunov exponent

spectrum for system (8) and

its distribution for initial

conditions (0, 1, 0)

Fig. 3 Lyapunov exponent

spectrum for system (8) and

its distribution for initial

conditions (0, 0, 0)

In short, for a specific chaotic system, we can use

variable substitution to realize TA C or P A C, where the

variables can be controlled in proportion at the same

desired rate.

3.2 E xamples of amplitude control with indication of

coexisting attractors

3 .2.1 T o tal am plitude co ntro l ( T A C )

A s a first example, we choose a system proposed in [7]

given by






ẋ = yz + a,

ẏ = x2 − y,

ż = 1 − 4x,

(7)

that for a = 0.01 has three coexisting attractors: a sta-

ble eq uilibrium, a limit cycle, and a strange attractor. To

achieve total amplitude control, we introduce a control

parameter c in the constant and q uadratic terms accord-

ing to






ẋ = 1
c

yz + ca,

ẏ = 1
c

x2 − y,

ż = c − 4x,

(8)

Since a transformation x = cu, y = cv , z = cw of

E q . (8) leads directly to E q . (7), the parameter c pro-

portionally controls the amplitude of variables x , y and

z according to c.

W ith fixed initial conditions of (0, 1, 0), variation of

c in the range [−2, 2] causes the Lyapunov exponents

to change as shown in F ig. 2 as the system transitions

between the three different dynamics as confirmed by

the corresponding clusters of points in the space of Lya-

punov exponents.

To illustrate an inappropriate choice of initial condi-

tions, consider the case (0, 0, 0) which gives the behav-

ior shown in F ig. 3 for which the only observed attractor

is the chaotic one. This selected initial condition does
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Fig. 4 Lyapunov exponent

spectrum for system (9) and

its distribution for initial

conditions (0, 1, 0)

Fig. 5 Lyapunov exponent

spectrum for system (10)

and its distribution for

initial conditions (1, 1, 0)

not pass through all the basins of attraction, and thus

it is a blind spot for coexisting attractors. F or systems

with symmetries, it is necessary to avoid initial condi-

tion along the axis (or axes) of symmetry.

3 .2.2 P artial am plitude co ntro l ( P A C )

F or a three-dimensional chaotic system, partial ampli-

tude control can be one-dimensional or two-dimen-

sional. If x = u, y = cv , z = w, the resulting

one-dimensional control system from E q . (9) is iden-

tical to (7), which indicates that the variable y is

controlled according to the parameter c, while the

amplitude of the variables x and z remains unchanged.

The resulting system is






ẋ = 1
c

yz + a,

ẏ = cx2 − y,

ż = 1 − 4x,

(9)

and the result of varying c over the range [−2, 2] for

initial conditions (0, 1, 0) is shown in F ig. 4.

F or an example of two-dimensional partial ampli-

tude control, let x = cu, y = cv , z = w. The resulting

control system from E q . (10) is identical to (7), and thus

the parameter c controls the amplitude of variables x

and y according to c, while the amplitude of z remains

unchanged. The resulting system is






ẋ = yz + ca,

ẏ = x2

c
− y,

ż = 1 − 4 x
c
,

(10)

and the result of varying c over the range [−2, 2] for ini-

tial conditions (1, 1, 0) is shown in F ig. 5. Both cases of

partial amplitude control pass through all three basins

of attraction and thus correctly identify all dynamics of

the system.

4 Discussion and conclusion

A mplitude control with fixed initial conditions pro-

vides a tool for identifying coexisting attractors in a
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dynamical system that may be more convenient in a

practical application than exploring all possible initial

conditions. It also provides an explanation for why a

system may exhibit different dynamical behaviors for

different settings of an amplitude control adjustment

even when the system is started with the same initial

conditions.

H owever, this method has some disadvantages. The

Lyapunov exponent calculation typically converges

more slowly than other measures such as the location

and size of the attractor, especially the second largest

Lyapunov exponent. F urthermore, it cannot easily dis-

tinguish two symmetrical attractors with the same Lya-

punov exponent spectra, which is common in systems

with symmetries. In such a case, the method can be used

with whatever measure is deemed most appropriate for

the system under consideration, or a combination of

measures could be used.

E ven though this phenomenon has practical con-

seq uences in that it might render the prediction of a

system’s behavior difficult, it is still an easy way to

find multiple stabilities in dynamical systems. In gen-

eral, when the amplitude parameter varies in a range

to control the size of the attractors, dynamical systems

will often, but not always, pass though the different

attracting basins. Thus, the method of amplitude con-

trol opens up interesting possibilities in the identifica-

tion and study of multistability with coexisting attrac-

tors, including coexisting hidden attractors.
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