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A dynamical system with four quadratic nonlinearities is found to display a butterfly strange
attractor. In a relatively large region of parameter space the system has coexisting point
attractors and limit cycles. At some special parameter combinations, there are five coexisting
attractors, where a limit cycle coexists with two equilibrium points and two strange attractors in
different attractor basins. The basin boundaries have a symmetric fractal structure. In addition,
the system has other multistable regimes where a pair of point attractors coexist with a single
limit cycle or a symmetric pair of limit cycles and where a symmetric pair of limit cycles coexist

without any stable equilibria.
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1. Introduction

Multistability and hidden attractors have been
of recent interest because they pose a threat to
practical engineering applications [Banerjee, 1997;
Chizhevsky, 2000; Graham & Tél, 1986; Leonov
et al., 2011, 2012; Okafor et al., 2010; Ray et al.,
2009; Sprott et al., 2013]. In high-dimensional sys-
tems and in low-dimensional systems with multi-
ple nonlinearities, coexisting attractors with their
separate attracting basins are often unavoidable. In
this paper, we consider a particular simple exam-
ple of a three-dimensional autonomous flow with
four quadratic terms and the following properties:
(1) It has three equilibrium points. (2) In certain
regions of parameter space, it has a symmetric mul-
tiwing strange attractor. (3) It has a broad region of

parameter space where a symmetric pair of point
attractors coexists with limit cycles of various struc-
tures and periodicities. (4) It has other regions with
five coexisting attractors, where a symmetric pair of
point attractors and a symmetric limit cycle coex-
ist with either a symmetric pair of limit cycles or
a symmetric pair of strange attractors. Also, the
system has other regimes, where two, three, or four
attractors coexist. (5) The basins of attraction have
a symmetric fractal structure. In Sec. 2, we map out
the dynamic regions in the two-dimensional bifurca-
tion parameter space. In Sec. 3, we describe the but-
terfly attractor, its basic properties, and its route to
chaos through a bifurcation diagram. In Sec. 4, we
show examples of the coexisting attractors and their
fractal basins. The last section is a discussion and
conclusion.
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2. A System with Four Quadratic
Nonlinearities and Its Dynamical
Regions

Inspired by the abundant dynamical behavior pro-
duced by polynomial nonlinearities and considering
that many real dynamical systems have numerous
nonlinear feedback loops, we consider a new three-
dimensional system of first-order, autonomous,
ordinary differential equations with four cross-
product terms,

T =y+yz,
y=—uz+yz, (1)
Z=—az—xy—+b.

System (1) is symmetric with respect to a 180° rota-
tion about the z-axis, which can be shown by the
coordinate transformation (x,y,z) — (—z,—y,2).
When ¢ +b > 0 and a # 0, system (1) pos-
sesses three real equilibrium points: P; = (0,0,b/a),
Py3 = (£Va+b,+va+b,—1). From the charac-
teristic equation, A3 + ((a® — b)/a)\? + ((b* + ab —
a®b)/a*)\+ ((b*> +ab)/a) = 0, the equilibrium point
Py is stable provided f(a,b) = (a? — b)? + ab +
a’b < 0 according to the Routh-Hurwitz criterion.
For other a > 0 and b > 0, the equilibrium P; is
always unstable. Equilibrium points P, and P5 are
symmetric with respect to the z-axis, and their sta-
bility varies according to the parameters a and b.
When they are unstable, they become the centers
of two attracting scrolls, and when they are stable,
they become a symmetric pair of coexisting point
attractors. For a, b < 0, the system apparently does
not have limit cycles or chaos, although it can have
stable equilibria.

For most dynamical systems with quadratic
nonlinearities, the bifurcation parameters are cho-
sen as coefficients of the linear and constant terms.
Since system (1) has seven terms, we expect it to
have three adjustable parameters since four of the
coefficients can be set to unity through a linear
rescaling of x, y, z, and t. However, we consider a
representative two-dimensional subset of the three-
dimensional parameter space using parameters a
and b in the third dimension. In this slice of param-
eter space, the regions of different dynamical behav-
ior are shown in Fig. 1. In this plot, each pixel is
calculated for a random initial condition taken from
a Gaussian distribution with mean zero and unit
variance, which accounts for the dotted regions that
are candidates for coexisting attractors.

a 1

Fig. 1. Regions of different dynamical behaviors in the space
of the bifurcation parameters a and b. The chaotic and tran-
siently chaotic regions (C) are shown in black, the periodic
regions (P) are shown in blue, and the stable equilibrium
regions (S) are shown in red.

More nonlinear terms generally result in
more complicated dynamical behavior as evidenced
by Fig. 1 which shows a number of specific
properties:

(1) Periodic solutions are the main behavior, with
limit cycles occurring over much of the region,
including numerous periodic windows and coex-
isting with point attractors.

(2) Periodic windows play an important role in the
evolution of the butterfly flow. There are many
evident periodic windows separating the chaotic
regions into isolated strips or islands.

(3) There is a relatively broad region of parameter
space in which the system has point attractors.

(4) The stability of the symmetric pair of equi-
librium points P 3 accounts for some of the
bifurcations on the right-hand side of the plot.
From the characteristic equation for P 3 given
by A3+ (a + DA% + (2a + D)X+ 2(a +b) = 0,
the theoretical bifurcation boundary b = %
shown in Fig. 2 divides the parameter space into
regions with unstable saddle-foci and stable
foci.

(5) The symmetry brings the possibility of a sym-
metric pair of coexisting attractors of the same
type, which would not be evident in Fig. 1.
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Fig. 2. The theoretical bifurcation boundary for the sym-
metric pair of foci.

(6) The dotted regions of red and blue indicate
point attractors coexisting with one or two limit
cycles.

(7) The dotted regions of red and black suggest
a strange attractor coexisting with a symmet-
ric pair of stable equilibrium points, but upon
closer inspection, these regions are found to be
only transiently chaotic [Dhamala & Lai, 1999],
with the flow eventually attracting to one of
the stable equilibria. The long transient is pre-
sumably a consequence of the presence of the
two equilibria with their convoluted basins of
attraction.

(a)

Fig. 3.

Butterfly chaotic attractor from Eq. (1) with a = 0.6, b = 3 for (x¢, y0,20) = (1,

Multistability in a Butterfly Flow

(8) The dotted regions of red, blue, and black indi-
cate coexisting strange attractors, limit cycles
and point attractors, only one other example
of which has been reported with three such
attractors [Sprott et al., 2013, whereas the
present case has five coexisting attractors of
three types.

3. Butterfly Chaotic Attractor and
Its General Properties

For a = 0.6 and b = 3, system (1) is chaotic with
a symmetric chaotic attractor as shown in Fig. 3.
The attractor exhibits four small butterfly wings
embedded in an outer double-wing. The Lyapunov
exponents for this case are L1 = 0.1528, Lo = 0,
L3 = —0.7828, and the Kaplan—Yorke dimension is
Dgy =2 — A\ /A3 =2.1952.

For @ = 0.6 and b = 3, the corresponding
equilibrium points are Py = (0,0,5) and P53 =
(:I:\/%,:I:\/%,fl). For the equilibrium P; =
(0,0,5), system (1) is linearized, and the Jacobian
matrix is given by

0 14=2 Y 0 6 0
J=1-=2 z y—xz | =1]1-5 5 0
-y -z —a 0 0 —-0.6
(2)
From |AI — J;| = 0, the resulting eigenvalues of
the Jacobian matrix J; are obtained as A\; = —0.6,

Aoz = 2.5 & 4.8734i. Here A\ is a negative real
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(b)

—1,1): (a) three-dimensional view,

(b) projection on z—y plane, (c) projection on z—z plane and (d) projection on y—z plane.
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Fig. 3.

number, and A9, A3 are a pair of complex conju-
gate eigenvalues with positive real parts. Conse-
quently, the equilibrium P; is a saddle-focus, and
system (1) is unstable at the P; equilibrium point.
For the equilibria P53 = (+£v/3.6,4+4/3.6, —1), the
resulting eigenvalues of the Jacobian matrix are
A1 =—1.6687, A2 3 =0.0344 £ 2.0769:. The resulting
eigenvalues of the Jacobian matrix also share a neg-
ative real number and a pair of complex conjugate
eigenvalues with positive real parts. Consequently,

(Continued)

the equilibria P53 are both saddle-foci. Therefore,
system (1) is unstable at these three equilibrium
points, and which results in the butterfly attractor.
The plot of the dynamical regions shows that
embedded periodic windows play an important role
in the evolution of the butterfly flow. As shown in
Figs. 4 and 5, after several periodic windows and
with an increase in limit cycles, the amplitude of
the chaotic signal increases, and the butterfly flow
expands its size as the limit cycles open up.
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Fig. 4. The dynamical behavior for a = 0.6 as b varies for (zo,y0,20) = (1,—1,1): (a) the value of y at z = 0 and (b) the

Lyapunov exponents.
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Fig. 5.
(a) b=1, (b) b=2.2, (c) b=4.8 and (d) b = 8.2.

4. Coexisting Attractors

As mentioned above, coexisting attractors are the
most significant feature of the system. There is
a relatively large parameter space of coexisting
attractors located on the right side of Fig. 1
where a symmetric pair of point attractors coexists
with other attractors. To compare with the region
without coexisting point attractors and to explore
more attractor-coexisting regimes, we select an
additional combination of parameters. As shown in
Fig. 6, the main coexisting regime is a symmetric
pair of point attractors coexisting with a symmetric
limit cycle. However, there are several other coexist-
ing regimes as shown in Table 1. The basic coexist-
ing attractors are the symmetric pair of stable foci.

Multistability in a Butterfly Flow
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Projection on the z—y plane of the trajectory in various periodic windows with a = 0.6 for (zg,y0,20) = (1,—1,1):

For some parameter combinations, the point attrac-
tors can coexist with a symmetric and/or symmet-
ric pair of limit cycles, while on the other side of
parameter space according to Fig. 2, a symmetric
or symmetric pair of limit cycles exist without sta-
ble equilibrium. In some parameter regions, the sys-
tem also has coexisting point attractors, limit cycles
and chaos. The corresponding phase portraits of the
coexisting attractors in the x—z plane are shown
in Fig. 6.

The symmetric pair of point attractors is the
basic coexisting regime in this butterfly flow. Fig-
ure 6(a) shows the trajectory approaching these
point attractors from two different initial condi-
tions. The coexisting periodic trajectories have a
wide variety of periods and structures as shown in
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Fig. 6. Phase portrait of coexisting attractors in the x—z plane: (a) a = 0.6, b =0.2, (b) a =0.6, b =1, (¢) a = 0.6, b = 3.3,
(d)a=09,b6=4,(e) a=0.9,6=48, (f)a=0.9,b=06, (g) a=0.55b=0.8 and (h) a = 0.55, b = 0.85 (red and blue, green
and black with symmetric initial conditions).
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Fig. 6. (Continued)

Figs. 6(b)-6(f). On either side of the theoretical
boundary in parameter space according to Fig. 2,
the limit cycles have different coexisting modes
according to the stability of the symmetric pair of
equilibrium points. In the area of unstable saddle-
foci, a symmetric pair of limit cycles coexists with-
out coexisting point attractors as shown in Fig. 6(c).
For a = 0.55 and b = 0.8, a symmetric limit cycle
coexists with a symmetric pair of stable foci and
a symmetric pair of strange attractors as shown in
Fig. 6(g). The Lyapunov exponents for the strange
attractors are L1 = 0.0508, Lo = 0, Lg = —0.4489.

For a = 0.55 and b = 0.85, three limit cycles coex-
ist with a symmetric pair of stable foci as shown in
Fig. 6(h).

The basins of attraction of the different attract-
ing sets provide more information about the coex-
isting attractors, which are defined as the set of
initial conditions whose trajectories converge to the
respective attractor. For a = 0.9 and b = 4, where
a symmetric pair of point attractors coexists with
a symmetric pair of limit cycles in Fig. 6(d), the
basins in the z = —1 plane are shown in Fig. 7.
The basins of the two point attractors are indicated

Table 1. Coexisting attractors for various parameters.
Initial Attractor
Regimes Parameters Conditions Lyapunov Exponents Dimensions

Symmetric pair of point attractors a=0.6,b=0.2 (£1,0,1) (—0.0939, —0.0946, —1.4104) 0
Two point attractors with a symmetric a=06,b=1 (:tl +2,—-1) (—0.0353, —0.0356, —1.5291) 0
limit cycle (1,0, 1) (0, —0.1616, —0.6657) 1
Symmetric pair of limit cycles a=0.6,b=33 (:tl 0,—-1) (0,—0.0944, —0.4522) 1
Two point attractors with a symmetric a=09,0b=4 (+£6.5,F1,1) (—0.0660,—0.0709, —1.7623) 0
pair of limit cycles (£1,F1,1) (0,—0.1107, —0.6636) 1
Two point attractors with a symmetric a=0.9,b=438 (£6.5,F1,1) (—0.0572,—0.0593, —1.7834) 0
limit cycle (£1,¥1,1)  (0,—0.1139, —0.6161) 1
Two point attractors with a symmetric a=09,b=6 (£6.5,F1,1) (—0.0451, —0.0465, —1.8084) 0
limit cycle (£1,F1,1) (0, —0.1843, —0.7039) 1
Two point attractors with a limit cycle a=0.55,b=038 (£1,£1,-1) (—0.0296, —0.0299, —1.4904) 0
and a symmetric pair of strange (0.8,0.3,0.5)  (0,—0.3550, —0.4618) 1

attractors (£0.4,0,1) (0.0508, 0, —0.4489) 2.1132
Two point attractors with a limit cycle a=0.55,b=0.85 (£1,£1,-1) (—0.0264, —0.0268, —1.4967) 0
and a symmetric pair of limit cycles (0.8,0.3,0.5)  (0,—0.4030, —0.4041) 1
(£0.4,0,1) (0, -0.0204, —0.3602) 1
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Fig. 7. Cross-section for z = —1 of the basins of attraction
for the limit cycles (light blue and yellow) and the symmetric
pair of point attractors (red and green) of system (1) at a =
09,b=4.

by red and green, respectively, and the basin of the
limit cycles are shown in light blue and yellow. The
basins have the expected symmetry about the z-axis
and a fractal boundary.

of T T T

Fig. 8. Cross-section for z = —1 of the basins of attraction
for the symmetric pair of point attractors (red and green) and
the limit cycle (light blue) of system (1) at a = 0.6, b = 1.

For the regime of three coexisting attractors,
the case a = 0.6 and b = 1, where a symmetric pair
of point attractors coexists with a limit cycle whose
trajectories are shown in Fig. 6(b) with basins of
attraction as shown in Fig. 8.

For the regime of five coexisting attractors,
with ¢ = 0.55 and b = 0.8, the basins of attraction
are shown in Fig. 9, where a symmetric limit cycle
coexists with a symmetric pair of point attractors
and a symmetric pair of strange attractors whose
trajectories are shown in Fig. 6(g). Furthermore, it
can be seen that the two coexisting strange attrac-
tors are linked together as shown in Fig. 10. How-
ever, it is verified that there is no continuous chaotic
path in ab-space from the region with a symmet-
ric pair of strange attractors to the region with a
single strange attractor. What appears to happen
is that the pair of strange attractors are destroyed
through a sequence of inverse period doublings to
a symmetric pair of limit cycles which then period
double and abruptly lose their stability while a sym-
metric strange attractor is born. This is not to
say that there are no other regions in parameter
space where two strange attractors merge into one,
but this may require considering the ignored third
parameter.

10

Fig. 9. Cross-section for z = —1 of the basins of attraction
for the symmetric pair of point attractors (red and green),
the symmetric limit cycle (light blue) and a symmetric pair
of strange attractors (yellow and dark blue) of system (1) at
a=0.55b=0..8.
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5. Discussion and Conclusion

There is a relationship between multistability and
equilibrium. The variation of bifurcation parame-
ters will change the property of the equilibrium
points and may embed corresponding point attrac-
tors in dynamical systems depending on the stabil-
ity of the equilibrium and attractor basins. Here
by the exploration of a new three-dimensional

Linked attractors in the z—y plane of system (1) at b = 0.8 and its evolution to a symmetric strange attractor.

autonomous butterfly flow with four cross-product
terms, we show that the embedded stable equilibria
can coexist with other attractors, and their unsta-
ble states can give birth to corresponding attracting
scrolls. The proposed butterfly flow is a good exam-
ple of three, four and even five coexisting attractors,
where a symmetric pair of point attractors coex-
ists with a symmetric limit cycle and with a sym-
metric pair of strange attractors or limit cycles. We
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conclude that the equilibrium points have different
dynamical effects depending on their stability and
the system structure.
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